Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (1): 131-137.doi: 10.6040/j.issn.1673-3770.0.2021.080
Previous Articles Next Articles
PAN Linlin, KONG Lingyi,ZHAI Feng, CHEN Jie
CLC Number:
[1] Newborn and infant hearing screening: current issues and guiding principles for action[R]. Geneva, Switzerland: WHO, 2010. [2] Yun CF, Wang ZJ, Gao JM, et al. Prevalence and social risk factors for hearing impairment in Chinese children-A national survey[J]. Int J Environ Res Public Health, 2017, 14(1): E88. doi:10.3390/ijerph14010088. [3] van der Straaten TFK, Rieffe C, Soede W, et al. Quality of life of children with hearing loss in special and mainstream education: a longitudinal study[J]. Int J Pediatr Otorhinolaryngol, 2020, 128: 109701. doi:10.1016/j.ijporl.2019.109701. [4] Wilson BS, Tucci DL, Merson MH, et al. Global hearing health care: new findings and perspectives[J]. Lancet, 2017, 390(10111): 2503-2515. doi:10.1016/S0140-6736(17)31073-5. [5] The Joint Committee on Infant Hearing. Year 2019 position statement: principles and guidelines for early hearing detection and intervention programs[J]. Journal of Early Hearing Detection and Intervention, 2019, 4(2): 1-44. doi: 10.15142/fptk-b748. [6] American Academy of Pediatrics, Joint Committee on Infant Hearing. Year 2007 position statement: Principles and guidelines for early hearing detection and intervention programs[J]. Pediatrics, 2007, 120(4): 898-921. doi:10.1542/peds.2007-2333. [7] Korver AM, Smith RJ, Van Camp G, et al. Congenital hearing loss[J]. Nat Rev Dis Primers, 2017, 3: 16094. doi:10.1038/nrdp.2016.94. [8] Casazza G, Meier JD. Evaluation and management of syndromic congenital hearing loss[J]. Curr Opin Otolaryngol Head Neck Surg, 2017, 25(5): 378-384. doi:10.1097/MOO.0000000000000397. [9] Wroblewska-Seniuk K, Greczka G, Dabrowski P, et al. Hearing impairment in premature newborns-Analysis based on the national hearing screening database in Poland[J]. PLoS One, 2017, 12(9): e0184359. doi:10.1371/journal.pone.0184359. [10] van Dommelen P, de Graaff-Korf K, Verkerk PH, et al. Maturation of the auditory system in normal-hearing newborns with a very or extremely premature birth[J]. Pediatr Neonatol, 2020, 61(5): 529-533. doi:10.1016/j.pedneo.2020.05.014. [11] van Dommelen P, Verkerk PH, van Straaten HL, et al. Hearing loss by week of gestation and birth weight in very preterm neonates[J]. J Pediatr, 2015, 166(4): 840-843.e1. doi:10.1016/j.jpeds.2014.12.041. [12] Wang C, Jiang ZD. Brainstem auditory abnormality in extremely premature babies and the impact of neonatal bronchopulmonary dysplasia[J]. Acta Obstet Gynecol Scand, 2018, 97(5): 545-551. doi:10.1111/aogs.13312. [13] Frezza S, Catenazzi P, Gallus R, et al. Hearing loss in very preterm infants: should we wait or treat?[J]. Acta Otorhinolaryngol Italica, 2019, 39(4): 257-262. doi:10.14639/0392-100X-2116. [14] Wang CH, Yang CY, Lien R, et al. Prevalence and independent risk factors for hearing impairment among very low birth weight infants[J]. Int J Pediatr Otorhinolaryngol, 2017, 93: 123-127. doi:10.1016/j.ijporl.2016.12.029. [15] Martínez-Cruz CF, García Alonso-Themann P, Poblano A, et al. Hearing loss, auditory neuropathy, and neurological co-morbidity in children with birthweight <750 G[J]. Arch Med Res, 2012, 43(6): 457-463. doi:10.1016/j.arcmed.2012.08.007. [16] 张玲, 叶海波, 时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019,33(3): 31-35. doi:10.6040/j.issn.1673-3770.1.2018.044. ZHANG Ling, YE Haibo, SHI Haibo. A new mechanism of bilirubin-induced auditory nervous system injury[J]. J Otolaryngol Ophthalmol Shandong Univ, 2019,33(3): 31-35. doi:10.6040/j.issn.1673-3770.1.2018.044. [17] Olds C, Oghalai JS. Bilirubin-induced audiologic injury in preterm infants[J]. Clin Perinatol, 2016, 43(2): 313-323. doi:10.1016/j.clp.2016.01.006. [18] Singh A, Francis HW, Smith PB, et al. Association between hyperbilirubinemia and hearing screen failure in the neonatal intensive care unit in infants born preterm[J]. J Pediatr, 2021, 231: 68-73. doi:10.1016/j.jpeds.2020.12.059. [19] Boskabadi H, Zakerihamidi M, Moradi A, et al. Risk factors for sensorineural hearing loss in neonatal hyperbilirubinemia[J]. Iran J Otorhinolaryngol, 2018, 30(99): 195-202. [20] Amin SB, Wang HY, Laroia N, et al. Unbound bilirubin and auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice[J]. J Pediatr, 2016, 173: 84-89. doi:10.1016/j.jpeds.2016.02.024. [21] Amin SB, Saluja S, Saili A, et al. Auditory toxicity in late preterm and term neonates with severe jaundice[J]. Dev Med Child Neurol, 2017, 59(3): 297-303. doi:10.1111/dmcn.13284. [22] Xu J, Weng ML, Li NQ, et al. Relationship research between auditory neuropathy spectrum disorder and exchange transfusion in neonates with severe hyperbilirubinemia[J]. Int J Pediatr Otorhinolaryngol, 2019, 123: 146-150. doi:10.1016/j.ijporl.2019.04.044. [23] Kvestad E, Lie KK, Eskild A, et al. Sensorineural hearing loss in children: the association with Apgar score. A registry-based study of 392, 371 children in Norway[J]. Int J Pediatr Otorhinolaryngol, 2014, 78(11): 1940-1944. doi:10.1016/j.ijporl.2014.08.032. [24] Zhai F, Fang XH, Li YB, et al. Risk factors for failure in first-time hearing screening tests among high-risk neonates in neonatal intensive care unit[J]. Audiol Neurootol, 2021: 1-8. doi:10.1159/000512761. [25] Fitzgerald MP, Reynolds A, Garvey CM, et al. Hearing impairment and hypoxia ischaemic encephalopathy: Incidence and associated factors[J]. Eur J Paediatr Neurol, 2019, 23(1): 81-86. doi:10.1016/j.ejpn.2018.10.002. [26] Kadıoglu ??塁im??塂ek G, Kutman HGK, Canpolat FE, et al. Hearing screening failure rate in newborn infants with hypoxic ischemic encephalopathy[J]. Int J Pediatr Otorhinolaryngol, 2020, 128: 109691. doi:10.1016/j.ijporl.2019.109691. [27] Lin JC, Huang H, Lv G, et al. Chronic prenatal hypoxia impairs cochlear development, a mechanism involving connexin26 expression and promoter methylation[J]. Int J Mol Med, 2018, 41(2): 852-858. doi:10.3892/ijmm.2017.3303. [28] 冯爽, 陈敬伟, 黄振云, 等. 缺氧对耳蜗听神经元电压门控性钠通道及凋亡因子表达的影响[J]. 现代医药卫生, 2019, 35(11): 1616-1618. doi:10.3969/j.issn.1009-5519.2019.11.005. FENG Shuang, CHEN Jingwei, HUANG Zhenyun, et al. Regulation on voltage gated sodium channels and Caspase-3 expression in spiral ganglion neurons by hypoxia[J]. J Mod Med Heal, 2019, 35(11): 1616-1618. doi:10.3969/j.issn.1009-5519.2019.11.005. [29] Leite JN, Silva VS, Buzo BC. Emissões otoacústicas em recém-nascidos com hipóxia perinatal leve e moderada[J]. CoDAS, 2016, 28(2): 93-98. doi:10.1590/2317-1782/20162015086. [30] Jiang ZD, Zang Z, Wilkinson AR. Cochlear function in 1-year-old term infants born with hypoxia-ischaemia or low Apgar scores[J]. J Paediatr Child Heal, 2012, 48(2): 160-165. doi:10.1111/j.1440-1754.2011.02066.x. [31] Ribeiro GE, Silva DP, Montovani JC. Transient evoked otoacoustic emissions and auditory brainstem response in infants with perinatal asphyxia[J]. Int J Pediatr Otorhinolaryngol, 2016, 89: 136-139. doi:10.1016/j.ijporl.2016.08.009. [32] 王鸿南, 王希军, 宋江顺. 急性缺氧对豚鼠听性脑干反应的影响[J]. 第一军医大学学报, 2000,20(3): 247-249. WANG Hongnan, WANG Xijun, SONG Jiangshun. The effects of acute Anoxia on the auditory brainstem response of Guinea pigs[J]. J First Mil Med Univ, 2000,20(3): 247-249. [33] Jiang ZD, Shao XM, Wilkinson AR. Brainstem auditory-evoked responses in full-term newborn infants with temporary low Apgar score[J]. Acta Otolaryngol, 2005, 125(2): 163-168. doi:10.1080/00016480410017684. [34] Michniewicz B, Wroblewska-Seniuk K, Amara JA, et al. Hearing impairment in infants with hypoxic ischemic encephalopathy treated with hypothermia[J]. Ther Hypothermia Temp Manag, 2021: ther.2020.0043. doi:10.1089/ther.2020.0043. [35] Khairy MA, Abuelhamed WA, Ahmed RS, et al. Hearing loss among high-risk newborns admitted to a tertiary Neonatal Intensive Care Unit[J]. J Matern Fetal Neonatal Med, 2018, 31(13): 1756-1761. doi:10.1080/14767058.2017.1326902. [36] Leung JC, Cifra CL, Agthe AG, et al. Antenatal factors modulate hearing screen failure risk in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2016, 101(1): F56-F61. doi:10.1136/archdischild-2014-307843. [37] Helmstaedter V, Buechner A, Stolle S, et al. Cochlear implantation in children with meningitis related deafness: The influence of electrode impedance and implant charge on auditory performance - A case control study[J]. Int J Pediatr Otorhinolaryngol, 2018, 113: 102-109. doi:10.1016/j.ijporl.2018.07.034. [38] Leruez-Ville M, Foulon I, Pass R, et al. Cytomegalovirus infection during pregnancy: state of the science[J]. Am J Obstet Gynecol, 2020, 223(3): 330-349. doi:10.1016/j.ajog.2020.02.018. [39] Demmler-Harrison GJ, Miller JA, Houston Congenital Cytomegalovirus Longitudinal Study Group. Maternal Cytomegalovirus immune status and hearing loss outcomes in congenital Cytomegalovirus-infected offspring[J]. PLoS One, 2020, 15(10): e0240172. doi:10.1371/journal.pone.0240172. [40] Goderis J, Keymeulen A, Smets K, et al. Hearing in children with congenital Cytomegalovirus infection: results of a longitudinal study[J]. J Pediatr, 2016, 172: 110-115.e2. doi:10.1016/j.jpeds.2016.01.024. [41] Congenital Cytomegalovirus infection: update on treatment[J]. BJOG: Int J Obstet Gy, 2018, 125(1): e1-e11. doi:10.1111/1471-0528.14836. [42] Whitley RJ. Congenital Cytomegalovirus and neonatal Herpes simplex virus infections: to treat or not to treat?[J]. Pediatr Infect Dis J, 2019, 38(6S Suppl 1): S60-S63. doi:10.1097/INF.0000000000002325. [43] Rasmussen SA, Jamieson DJ, Honein MA, et al. Zika virus and birth defects: reviewing the evidence for causality[J]. N Engl J Med, 2016, 374(20): 1981-1987. doi:10.1056/NEJMsr1604338. [44] Gazeta RE, Bertozzi APAP, de Cássia de Aguirre Bernardes Dezena R, et al. Three-year clinical follow-up of children intrauterine exposed to zika virus[J]. Viruses, 2021, 13(3): 523. doi:10.3390/v13030523. [45] Leal MC, Muniz LF, Ferreira TS, et al. Hearing loss in infants with microcephaly and evidence of congenital zika virus infection-Brazil, November 2015-may 2016[J]. MMWR Morb Mortal Wkly Rep, 2016, 65(34): 917-919. doi:10.15585/mmwr.mm6534e3. [46] Adebanjo T, Godfred-Cato S, Viens L, et al. Update: interim guidance for the diagnosis, evaluation, and management of infants with possible congenital zika virus infection - United States, October 2017[J]. MMWR Morb Mortal Wkly Rep, 2017, 66(41): 1089-1099. doi:10.15585/mmwr.mm6641a1. [47] Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss[J]. J Clin Invest, 2015, 125(2): 583-592. doi:10.1172/JCI77424. [48] Koo JW, Quintanilla-Dieck L, Jiang MY, et al. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity[J]. Sci Transl Med, 2015, 7(298): 298ra118. doi:10.1126/scitranslmed.aac5546. [49] Barbarino JM, McGregor TL, Altman RB, et al. PharmGKB summary: very important pharmacogene information for MT-RNR1[J]. Pharmacogenet Genomics, 2016, 26(12): 558-567. doi:10.1097/FPC.0000000000000247. [50] Yang HY, Luo HY, Zhang GW, et al. A multiplex PCR amplicon sequencing assay to screen genetic hearing loss variants in newborns[J]. BMC Med Genomics, 2021, 14(1): 61. doi:10.1186/s12920-021-00906-1. [51] Rabiço-Costa D, Gil-da-Costa MJ, Barbosa JP, et al. Platinum-drugs ototoxicity in pediatric patients with brain tumors: a 10-year review[J]. J Pediatr Hematol Oncol, 2020, 42(1): e25-e31. doi:10.1097/MPH.0000000000001637. [52] Wang LA, Smith PB, Laughon M, et al. Prolonged furosemide exposure and risk of abnormal newborn hearing screen in premature infants[J]. Early Hum Dev, 2018, 125: 26-30. doi:10.1016/j.earlhumdev.2018.08.009. [53] Judge PD, Jorgensen E, Lopez-Vazquez M, et al. Medical referral patterns and etiologies for children with mild-to-severe hearing loss[J]. Ear Hear, 2019, 40(4): 1001-1008. doi:10.1097/AUD.0000000000000682. [54] Seror J, Amand G, Guibourdenche J, et al. Anti-TPO antibodies diffusion through the placental barrier during pregnancy[J]. PLoS One, 2014, 9(1): e84647. doi:10.1371/journal.pone.0084647. [55] Meyerhoff WL. Hypothyroidism and the ear: electrophysiological, morphological, and chemical considerations[J]. Laryngoscope, 1979, 89(10 Pt 2 Suppl 19): 1-25. doi:10.1002/lary.5540891501. [56] Lee JA, Mehta CH, Nguyen SA, et al. Hearing outcomes in children of diabetic pregnancies[J]. Int J Pediatr Otorhinolaryngol, 2020, 132: 109925. doi:10.1016/j.ijporl.2020.109925. [57] Bakhshaee M, Boskabadi H, Hassanzadeh M, et al. Hearing impairment in the neonate of preeclamptic women[J]. Otolaryngol Head Neck Surg, 2008, 139(6): 846-849. doi:10.1016/j.otohns.2008.09.018. [58] Wilunda C, Yoshida S, Tanaka S, et al. Exposure to tobacco smoke prenatally and during infancy and risk of hearing impairment among children in Japan: a retrospective cohort study[J]. Paediatr Perinat Epidemiol, 2018, 32(5): 430-438. doi:10.1111/ppe.12477. [59] Zhao HB. Hypothesis of k+-recycling defect is not a primary deafness mechanism for Cx26(GJB2)deficiency[J]. Front Mol Neurosci, 2017, 10: 162. doi:10.3389/fnmol.2017.00162. [60] Zhu Y, Chen J, Liang C, et al. Connexin26(GJB2)deficiency reduces active cochlear amplification leading to late-onset hearing loss[J]. Neuroscience, 2015, 284: 719-729. doi:10.1016/j.neuroscience.2014.10.061. [61] Huang SS, Huang BQ, Wang GJ, et al. The relationship between the p.V37I mutation in GJB2 and hearing phenotypes in Chinese individuals[J]. PLoS One, 2015, 10(6): e0129662. doi:10.1371/journal.pone.0129662. [62] Morton CC, Nance WE. Newborn hearing screening: a silent revolution[J]. N Engl J Med, 2006, 354(20): 2151-2164. doi:10.1056/NEJMra050700. [63] Wang QJ, Xiang JL, Sun J, et al. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China[J]. Genet Med, 2019, 21(10): 2231-2238. doi:10.1038/s41436-019-0481-6. [64] Huang SS, Huang BQ, Wang GJ, et al. The relationship between the GJB3 c.538C>T variant and hearing phenotype in the Chinese population[J]. Int J Pediatr Otorhinolaryngol, 2017, 102: 67-70. doi:10.1016/j.ijporl.2017.09.001. [65] Kim SY, Choi BY, Jung EY, et al. Risk factors for failure in the newborn hearing screen test in very preterm twins[J]. Pediatr Neonatol, 2018, 59(6): 586-594. doi:10.1016/j.pedneo.2018.01.014. [66] Sasireka BI, Jaya V, Vignesh SS, et al. Clinical experience on hearing screening in twins and triplets: a retrospective study[J]. Indian J Otolaryngol Head Neck Surg, 2019, 71(3): 401-405. doi:10.1007/s12070-017-1117-2. [67] 国家卫生和计划生育委员会新生儿疾病筛查听力诊断治疗组. 婴幼儿听力损失诊断与干预指南[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 53(3): 181-188. doi:10.3760/cma.j.issn.1673-0860.2018.03.004. [68] Kei J, Allison-Levick J, Dockray J, et al. High-frequency(1000 Hz)tympanometry in normal neonates[J]. J Am Acad Audiol, 2003, 14(1): 20-28. doi:10.3766/jaaa.14.1.4. [69] Myers J, Kei J, Aithal S, et al. Development of a diagnostic prediction model for conductive conditions in neonates using wideband acoustic immittance[J]. Ear Hear, 2018, 39(6): 1116-1135. doi:10.1097/AUD.0000000000000565. [70] Guo L, Xiang JL, Sun L, et al. Concurrent hearing and genetic screening in a general newborn population[J]. Hum Genet, 2020, 139(4): 521-530. doi:10.1007/s00439-020-02118-6. |
[1] | DUAN Xinyan, SONG Zhongyi, WANG Ning, ZI Xicun, PAN Xinliang. Application value of distortion product otoacoustic emission and high stimulation rate auditory brainstem response in patients with normal hearing tinnitus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 6-10. |
[2] | YANG Kun, CHEN Lijuan, HE Xiaodan, LIU Zhiqi, SHA Suhua. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11. |
[3] | XU Jia, LI Xin, CHEN Wenjing, GAO Juanjuan, LU Xingxing, YI Haijin. Short-term and long-term outcomes of endolymphatic sac decompression with instillation of local steroids for intractable Meniere's disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 17-21. |
[4] | HUANG Lan, GAO WeiOverview,CHEN GanggangGuidance. Research progress on the pathogenesis and clinical characteristics of BPPV secondary to inner ear diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 108-113. |
[5] | MA Ning, CHEN Min, LIU Wei, YANG Yang, SHAO Jianbo, HAO Jinsheng, LIU Bing, ZHANG Xiao, DUAN Xiaomin, ZHANG Qifeng, ZHANG Jie. Clinical characteristics and management of pediatric temporal bone fractures [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 13-19. |
[6] | PAN Linlin, FANG Xuhua, ZHAI Feng, GUI Yiding, BIAN Zhouliang, CHEN Jie. The correlation between arterial blood gas analysis and hearing screening results in neonates [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 20-24. |
[7] | HU Chunyan, DANG Panhong, ZHANG Rui, FAN Mengyun. Analysis of audiological and imaging characteristics of 149 children with unilateral sensorineural hearing loss [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 31-36. |
[8] | NI Kun, SUN Shibing, LI Xiaoyan. Application of 1 000 Hz acoustic immittance in hearing screenings of high-risk newborns [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 43-47. |
[9] | ZHANG Fengzhen, WANG Guixiang, ZHAO Jing, WANG Hua, DUAN Qingchuan, LI Hongbin, HEI Mingyan, WENG Jingwen, ZHANG Jie. Clinical characteristics and outcomes of neonates with bilateral vocal cord paralysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 86-90. |
[10] | ZHOU Lamei, JIANG Wen, LIU Wen, QIAO Yuehua. Analysis of factors related to the severity of persistent idiopathic tinnitus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 70-76. |
[11] | ZHONG Liping, GUAN Xilong, WANG Jingjing, TANG Yong. Intratympanic injections and systemic glucocorticoid treatment for sudden hearing loss: a systematic review and Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 1-10. |
[12] | LI Yuanchao, WU Wei, WANG Gang, QU Changbei, WANG Lei, LU Wenjun, LI Dan, HAN Haolun, LIU Gang. Effects of simulated weightlessness and continuous noise in a spaceship on auditory function of rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 11-16. |
[13] | TAN Yufang, YI Tianhua. Clinical characteristics and prognosis of sudden sensorineural hearing loss in post-irradiated nasopharyngeal carcinoma survivors: a report of 18 cases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 35-39. |
[14] | To analyze the clinical outcomes of patients with unilateral idiopathic sudden sensorineural hearing loss(SSNHL)and explore the relationship between vestibular function and prognosis in patients with SSNHL. MethodsA retrospective analysis of patients( ears)with SSNHL was performed. A total of vestibular function tests were performed in all patients to assess the influence of vestibular functions on the clinical outcome of SSNHL. ResultsTreatments were less effective in patients with abnormalities in ocular vestibular evoked myogenic potential(oVEMP)or cervical vestibular evoked myogenic potential(cVEMP). Those with normal oVEMP and cVEMP had relatively better hearing recovery. The outcomes of the caloric test or video head impulse test showed no association with the efficacy of treatment or hearing recovery in patients with SSNHL. Treatment was less effective in patients with abnormalities in both oVEMP and cVEMP, who also had worse hearing recovery than those who had an abnormal finding in only one of the two tests. ConclusionsPatients with abnormal oVEMP or cVEMP results had poor clinical outcomes, while those with normal oVEMP and cVEMP demonstrated better hearing recovery with treatment. Thus, oVEMP and cVEMP could be effective indices to predict the prognosis of patients with SSNHL. An abnormal vestibular function is a definite indicator of a wider and more severe pathological change in the inner ear of patients with SSNHL.. Clinical value of vestibular evoked myogenic potential to predict prognosis of unilateral idiopathic sudden sensorineural hearing loss [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 27-32. |
[15] | To analyze the relationship between vestibular symptoms and function and hearing outcomes in patients with unilateral profound sudden sensorineural hearing loss(SSNHL). MethodsA retrospective analysis of patients with unilateral profound SSNHL was performed. Vestibular symptoms and the results of ocular vestibular evoked myogenic potential(oVEMP), cervical vestibular evoked myogenic potential(cVEMP), video head impulse test(vHIT), and caloric test were analyzed to observe the relationship between hearing outcomes and vestibular symptoms and function. ResultsOf patients with unilateral profound SSNHL, there was a significant difference between the patients with and without vestibular symptoms, patients with vestibular dysfunction, and those with normal vestibular function. Patients with abnormal oVEMP, cVEMP, vHIT, and caloric test results showed a lower total effective rate. In contrast, patients with normal results in all four tests had a higher hearing recovery. ConclusionPatients with unilateral profound SSNHL with abnormal vestibular dysfunction and symptoms had a poor curative effect. Conversely, those with normal oVEMP, cVEMP, vHIT, and caloric test results had better chances of hearing recovery. Abnormal vestibular function suggests more extensive and severe inner ear lesions in patients with unilateral profound SSNHL.. Relationship between prognosis and vestibular symptoms/function in patients with unilateral profound sudden sensorineural hearing loss: A retrospective analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 33-38. |
|