Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 11-16.doi: 10.6040/j.issn.1673-3770.0.2021.126

Previous Articles     Next Articles

Effects of simulated weightlessness and continuous noise in a spaceship on auditory function of rats

LI Yuanchao1,2,3, WU Wei1,2,3, WANG Gang2,3, QU Changbei2, WANG Lei2, LU Wenjun2, LI Dan2, HAN Haolun2, LIU Gang2   

  1. 1. The 306th Hospital of PLA-PeKing University Teaching Hospital, Beijing 100101, China;
    2. Department of Otolaryngology, Strategic Support Force Medical Center, Beijing 100101, China;
    3. State Environmental Protection Key Laboratory of Environmental Sense Organ Stress and Health, Beijing 100101, China
  • Published:2021-09-29

Abstract: Objective To explore the time-effect relationship of simulated weightlessness and moderate-intensity continuous noise in a spaceship on the auditory function of rats. Methods Ninety-six male Sprague-Dawley(SD)rats were randomly divided into the weightlessness group, noise group, weightlessness + noise group, and a control group(n=24 per group). On this basis, the rats in each group were divided into 1-week and 4-week groups according to exposure time(n=12 per subgroup). Half of the rats were killed immediately after exposure(P0)as the immediate after exposure group, and the other half were killed 7 days after exposure(P7)as the recovery group(n=6). The tail suspension method(Morey Holton method)was used to simulate weightlessness, and the white noise signal generation system was used to simulate moderate continuous noise:(72±2)dB sound pressure level(SPL)continuous noise for 8 h /d and(50±2)dB SPL continuous noise for 16 h /d in the spaceship. Auditory brainstem response(ABR)thresholds and distortion product otoacoustic emission(DPOAE)were measured at B0, P0, and P7. Results ABR thresholds were(10.83±5.25),(8.13±4.62),(13.54±8.53),(7.08±2.52)dB SPL in the weightlessness group, noise group, weightlessness + noise group, and control group at 1 week P0;(6.67±2.46),(5.83±1.95),(8.75±4.33),(7.92±3.34)dB SPL at 1 week P7;(18.13±7.19),(16.04±5.71),(19.58±8.33),(6.04±2.54)dB SPL at 4 weeks P0; and(7.92±3.96),(7.92±3.34),(14.17±7.93), and(6.25±2.26)dB SPL at 4 weeks P7. The ABR threshold of rats in the weightlessness and weightlessness + noise groups after exposure for 1 week were higher than before exposure and became further aggravated as time progressed. However, there was no significant difference in ABR threshold of noise group between after 1 week exposure and before exposure, although there was significant difference 4 weeks after exposure. There was no significant difference in ABR threshold in the weightlessness + noise group between P7 and P0; thus, the ABR threshold showed no recovery. The ABR threshold of the other exposure groups recovered completely at P7. There was no significant difference in the DPOAE extraction rate between the experimental groups before and after exposure. Conclusion Weightlessness and continuous noise have a significant cumulative and synergistic effect on hearing impairment, with weightlessness being dominant. The ABR threshold shift induced by 4-week simulated weightlessness or moderate continuous noise exposure alone is reversible, but the combined exposure for 4 weeks may have caused irreversible hearing damage, with damage mainly linked to the function of inner hair cells.

Key words: Weightlessness, Noise, Auditory brainstem response, Distortion product otoacoustic emission

CLC Number: 

  • R764.5
[1] 杨剑, 刘博, 韩德民. 航天性听损伤及其机制探讨[J]. 国外医学(耳鼻咽喉科学分册), 2004, 28(6):374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015. YANG Jian, LIU Bo, HAN Deming. Space induced hearing loss and its mechanism [J]. Foreign Medicine(Otolaryngology), 2004,28(6): 374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015.
[2] Roller CA, Clark JB. Short-duration space flight and hearing loss[J]. Otolaryngol Head Neck Surg,2003,129(1):98-106. doi: 10.1016/S0194-5998(03)00523-0.
[3] 陈娜,吴玮,丁瑞英,等.模拟载人飞船内微重力和噪声环境下大鼠耳蜗毛细胞的形态学变化[J].北京大学学报(医学版),2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021. CHEN Na, WU Wei, DING Ruiying, et al. Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise [J]. Journal of Peking University(Health Sciences), 2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021.
[4] 王博, 李娟娟, 李秀霞,等. 4人180天受控生态生保集成试验乘员听力变化研究[J]. 航天医学与医学工程, 2018, 31(2):289-294. doi: 10.16289/j.cnki.1002-0837.2018.02.028. WANG Bo, LI juanjuan, LI Xiuxia, et al. Study on hearing change of 4 crew members in 180 day controlled ecological health insurance integrated test [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 289-294. doi:10.16289/j.cnki.1002-0837.2018.02.028.
[5] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects[J]. J Appl Physiol(1985),2002,92(4):1367-1377. doi:10.1152/japplphysiol.00969.2001.
[6] 吴玮,韩浩伦,王鸿南,等.模拟失重条件下飞船内噪声对豚鼠耳蜗形态与功能的影响[J].中华耳科学杂志,2010,8(1):95-99. doi:10.3969/j.issn.1672-2922.2010.01.020. WU Wei, HAN Haolun, WANG hongnan, et al. Changes in cochlear ultrastructure and hearing in guinea pigs in response to simulated weightlessness and space craft noise [J]. Chinese Journal of Otology, 2010,8(1): 95-99. doi:10.3969/j.issn.1672-2922.2010.01.020.
[7] 周莹,吴玮,韩浩伦,等.模拟飞船舱内中长期失重及噪声复合因素对大鼠听器官的影响[J].中国耳鼻咽喉头颈外科,2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004. ZHOU Ying, WU Wei, HAN Haolun, et al. Effects of simulated noise-weightlessness combined factors in spaceship on auditory function of rats after a medium-long term[J]. Chin Arch Otolaryngol Head Neck Surg, 2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004.
[8] Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hearing Res, 2017, 352:12-22. doi:10.1016/j.heares.2016.10.015.
[9] Darvishi E, Golmohammadi R, Faradmal J, et al. Psychophysiological responses to medium levels of occupational noise: an exposure–response relationships[J]. Acoust Aust, 2019,47(3):217-228. doi:10.1007/s40857-019-00159-0.
[10] Liu XP, Li L, Chen GD, et al. How low must you go? Effects of low-level noise on cochlear neural response[J]. Hearing Res, 2020, 392:107980. doi:10.1016/j.heares.2020.107980.
[11] Feng S, Yang L, Hui L, et al. Long-term exposure to low-intensity environmental noise aggravates age-related hearing loss via disruption of cochlear ribbon synapses[J]. Am J Transl Res, 2020, 12(7):3674-3687. PMID: 32774726.
[12] 宋峰, 甘彬, 许安廷, 等. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204. SONG Feng, GAN Bin, XU Anting, et al. Long-term low intensity noise exposure reduce the number of ribbon synapses in guinea pigs [J]. Journal of Otolaryngology and Ophthalmology of Shandong University,2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204.
[13] Shi L, Chang Y, Li X, et al. Cochlear synaptopathy and noise-induced hidden hearing loss[J]. Neural Plast, 2016, 2016:6143164-6143169. doi:10.1155/2016/6143164.
[14] 王顶, 马秀岚. 噪声性耳聋机制的研究进展[J]. 中华耳科学杂志, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019. WANG Ding, MA Xiulan. Research advances on mechanisms of noise-induced hearing loss[J]. Chinese Journal of Otology, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019.
[15] 徐昂, 刘亭彦, 韩锋产. 自噬与内耳发育及听觉功能的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 32(2):123-125. doi:10.6040/j.issn.1673-3770.0.2018.398. XU Aang, LIU Tingyan, HAN Fengchan. Progress of research on autophagy, inner ear development, and auditory function[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 32(2): 123-125. doi:10.6040/j.issn.1673-3770.0.2018.398.
[16] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss[J]. J Neurosci. 2009, 29(45):14077-14085. doi:10.1523/JNEUROSCI.2845-09.2009.
[17] Liberman MC. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration [J]. Adv Exp Med Biol. 2016, 875: 1-7. doi:10.1007/978-1-4939-2981-8_1.
[18] Valero M, Burton J A, Hauser S N, et al. Noise-induced cochlear synaptopathy in rhesus monkeys(Macaca mulatta)[J]. Hearing Res, 2017, 353: 213-223. doi:10.1016/j.heares.2017.07.003.
[19] Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiologica, 2020, 228(3):e13434,n/a. doi:10.1111/apha.13434.
[20] Marshall-Goebel K, Damani R, Bershad EM. Brain physiological response and adaptation during spaceflight. Neurosurgery, 2019, 85(5): E815-821.
[21] 张驰,吴玮,韩浩伦,等.模拟航天环境对大鼠内耳淋巴液容积的影响[J].中华耳科学杂志,2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030. ZHANG Chi, WU Wei, HAN Haolun, et al. Effects of simulated spacecraft environment on rat auditory system and inner ear lymphatic fluid volume[J]. Chinese Journal of Otology, 2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030.
[22] Hughson RL, Helm A, Durante M. Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol, 2018,15(3):167-180. doi:10.1038/nrcardio.2017.157.
[23] 詹皓. 航天失重环境中机体的氧化应激损伤与防护措施研究进展[J]. 中华航空航天医学杂志, 2015, 26(4):296-302. doi: 10.3760/cma.j.issn.1007-6239.2015.04.016. ZHAN Hao. Advances on space weightlessness induced oxidative stress injury and the protective measures[J]. Chinese Journal of Aerospace Medicine, 2015, 26(4):296-302. doi:10.3760/cma.j.issn.1007-6239.2015.04.016.
[24] 李英贤, 凌树宽, 赵亚丽,等. 航天医学问题的细胞分子基础研究进展[J]. 航天医学与医学工程, 2018, 31(2):140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008. LI Yingxian, LING Shukuan, ZHAO Yali, et al. Research progress on cellular and molecular basis of aerospace medicine [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008.
[25] 李兴启. 听觉诱发反应及应用[M]. 北京:人民军医出版社, 2007.
[26] Lobarinas E, Salvi R, D Ding. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss[J]. Jaro-J Assoc Res Oto, 2016, 17(2): 89-101. doi:10.1007/s10162-015-0550-8.
[27] Colleen G, Le P. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature[J]. Int J Audiol, 2019, 58(Supp1):S3-S32. doi:10.1080/14992027.2018.1534010.
[1] DUAN Xinyan, SONG Zhongyi, WANG Ning, ZI Xicun, PAN Xinliang. Application value of distortion product otoacoustic emission and high stimulation rate auditory brainstem response in patients with normal hearing tinnitus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 6-10.
[2] NI Kun, SUN Shibing, LI Xiaoyan. Application of 1 000 Hz acoustic immittance in hearing screenings of high-risk newborns [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 43-47.
[3] PAN Linlin, KONG LingyiOverview, ZHAI Feng, CHEN JieGuidance. Research progress on auditory risk factors and hearing screening methods among neonates [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 131-137.
[4] CHEN Wei, HU Zhongnan, TONG Zhaojun, LI Xiangyu, LIU Wenjun. Characteristics of auditory brainstem response to high-frequency stimulus in young and middle-aged patients with sudden deafness and no history of vertigo or cardiocerebrovascular disease [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 45-49.
[5] ZHOU Jialei, SUN Shibing, LI Jingyu, CHEN Fang, LI Xiaoyan. Comparison and significance of different automated auditory brainstem response testing times in infants [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(2): 66-69.
[6] SONG Feng, GAN Bin, XU Anting, WANG Jian. Long-term low intensity noise exposure reduce the number of ribbon synapses in guinea pigs. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 41-44.
[7] ZHANG Zhuan, LIU Tao, BAI Zhili, ZHOU Changming. Evolution of oxidative stress in the pathogenesis and treatment of noise-induced hearing loss. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 101-103.
[8] LIU Zhi-qi1,2, LIU Li-si1, YANG Kun3. Hearing screenings  in 11894 infants [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(2): 8-12.
[9] CAO Xiao-ping, WANG Tian-sheng, GU Dong-sheng, HUANG Ai-ping.. Tinni TestTM and high stimulus rate auditory brainstem response in  patients with normal hearing [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(4): 6-9.
[10] WANG Bin, CAO Ke-li. Recent developments in audiology of demyelinating diseases [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(1): 76-79.
[11] YAN Hui-qin , WANG Hai-tao, ZHOU Feng, HANG Li-fen. Comparison of auditory brainstem response and auditory  steady-state response in normal guinea pigs [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2011, 25(3): 43-45.
[12] YU Chong-xian, YANG Ke-lin, ZHANG Xiao-min, WANG Ping. Normal values of auditory brainstem responses in 3-4 months and 5-6 months old infants [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(4): 17-20.
[13] ZHOU Bin1, XU Ping1, LI Yan1, MA Xiao-nan1, WU Shuo1, XIA Hong2. Protection of CEP-1347 on noise-damaged cochlea [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(4): 25-28.
[14] JIANG Yi,LI Rui-yu,CHEN Yong . Effect of Paclitaxel on the hearing threshold in guinea pigs [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(4): 360-361 .
[15] GAO Xia,Fleischer Grald,DING Xiao-qiong,ZHANG Qian . Influence of firecrackers′ impulse noise on auditory function [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 24-27 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 200 -203 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 206 -208 .
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .