Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (1): 132-139.doi: 10.6040/j.issn.1673-3770.0.2021.482
WANG Anyang1,2, LI Chaoyou2, XUE Gang2, WU Jingfang1
CLC Number:
[1] Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab, 2019, 30(8): 479-490. doi:10.1016/j.tem.2019.05.008 [2] 宋影春, 郁霞青, 李丹. 乳头状甲状腺癌术后功能减低患者肠道微生物群落的结构性变化[J]. 同济大学学报(医学版), 2019, 40(2): 144-151. doi:10.16118/j.1008-0392.2019.02.003 SONG Yingchun, YU Xiaqing, LI Dan. Structural changes of gut microbiota in papillary thyroid carcinoma patients with postoperative hypothyroidism[J]. Journal of Tongji University(Medical Science), 2019, 40(2): 144-151. doi:10.16118/j.1008-0392.2019.02.003 [3] Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease[J]. Eur J Immunol, 2018, 48(4): 564-575. doi:10.1002/eji.201646879 [4] Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship[J]. Pediatr Nephrol, 2017, 32(6): 921-931. doi:10.1007/s00467-016-3392-7 [5] Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer's disease[J]. J Neuroinflammation, 2019, 16(1): 108. doi:10.1186/s12974-019-1494-4 [6] Su XH, Zhao Y, Li Y, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis[J]. Clin Sci(Lond), 2020, 134(12): 1521-1535. doi:10.1042/CS20200475 [7] Knezevic J, Starchl C, Tmava Berisha A, et al. Thyroid-gut-axis: how does the microbiota influence thyroid function? [J]. Nutrients, 2020, 12(6): E1769. doi:10.3390/nu12061769 [8] Docimo G, Cangiano A, Romano RM, et al. The human microbiota in endocrinology: implications for pathophysiology, treatment, and prognosis in thyroid diseases[J]. Front Endocrinol(Lausanne), 2020, 11: 586529. doi:10.3389/fendo.2020.586529 [9] Samimi H, Haghpanah V. Gut microbiome and radioiodine-refractory papillary thyroid carcinoma pathophysiology[J]. Trends Endocrinol Metab, 2020, 31(9): 627-630. doi:10.1016/j.tem.2020.03.005 [10] 余今菁, 李欢, 胡邱宇, 等. 基于高通量测序技术的溃疡性结肠炎患者肠道菌群多样性研究[J]. 华中科技大学学报(医学版), 2018, 47(4): 460-465. doi:10.3870/j.issn.1672-0741.2018.04.015 YU Jinjing, LI Huan, HU Qiuyu, et al. Research on gut microbiota diversity in patients with ulcerative colitis by high-throughput sequencing[J]. Current Medical Science, 2018, 47(4): 460-465. doi:10.3870/j.issn.1672-0741.2018.04.015 [11] Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nat Med, 2016, 22(10): 1079-1089. doi:10.1038/nm.4185 [12] Knezevic J, Starchl C, Tmava Berisha A, et al. Thyroid-gut-axis: how does the microbiota influence thyroid function? [J]. Nutrients, 2020, 12(6): E1769. doi:10.3390/nu12061769 [13] Virili C, Centanni M. “With a little help from my friends” - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling[J]. Mol Cell Endocrinol, 2017, 458: 39-43. doi:10.1016/j.mce.2017.01.053 [14] El-Zawawy HT, Ahmed SM, El-Attar EA, et al. Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases[J]. Int J Clin Pract, 2021, 75(5): e14038. doi:10.1111/ijcp.14038 [15] Liu SM, An YX, Cao B, et al. The composition of gut microbiota in patients bearing hashimoto's thyroiditis with euthyroidism and hypothyroidism[J]. Int J Endocrinol, 2020, 2020: 5036959. doi:10.1155/2020/5036959 [16] Zhou L, Li XL, Ahmed A, et al. Gut microbe analysis between hyperthyroid and healthy individuals[J]. Curr Microbiol, 2014, 69(5): 675-680. doi:10.1007/s00284-014-0640-6 [17] Feng J, Zhao FY, Sun JY, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients[J]. Int J Cancer, 2019, 144(11): 2728-2745. doi:10.1002/ijc.32007 [18] Yu XQ, Jiang W, Kosik RO, et al. Gut microbiota changes and its potential relations with thyroid carcinoma[J]. J Adv Res, 2021, 35: 61-70. doi:10.1016/j.jare.2021.04.001 [19] Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin[J]. Antimicrob Agents Chemother, 2012, 56(11): 5811-5820. doi:10.1128/AAC.00789-12 [20] 李小雅, 谭周进. 中医药调节肠道微生态研究技术进展[J]. 世界华人消化杂志, 2021, 29(9): 479-487. LI Xiaoya, TAN Zhoujin. Advances in research technology of regulation of intestinal microecology by traditional Chinese medicine[J]. World Chinese Journal of Digestology, 2021, 29(9): 479-487. [21] Tolonen AC, Xavier RJ. Dissecting the human microbiome with single-cell genomics[J]. Genome Med, 2017, 9(1): 56. doi:10.1186/s13073-017-0448-7 [22] Aranda-Díaz A, Ng KM, Thomsen T, et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota[J]. Cell Host Microbe, 2022, 30(2): 260-272.e5. doi:10.1016/j.chom.2021.12.008 [23] 李波, 侍荣华, 李宗杰. 肠道菌群-肠-脑轴与心身疾病的相互关系[J]. 生理科学进展, 2018, 49(3): 221-226. LI Bo, SHI Ronghua, LI Zongjie. The correlations between microbiota-gut-brain axis and psychosomatic disorders[J]. Progress in Physiological Sciences, 2018, 49(3): 221-226. [24] Lerner A, Jeremias P, Matthias T. Gut-thyroid axis and celiac disease[J]. Endocr Connect, 2017, 6(4): R52-R58. doi:10.1530/EC-17-0021 [25] Martínez FG, Moreno-Martin G, Pescuma M, et al. Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids[J]. Front Bioeng Biotechnol, 2020, 8: 506. doi:10.3389/fbioe.2020.00506 [26] Talebi S, Karimifar M, Heidari Z, et al. The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: a randomized, doubleblind, placebocontrolled trial[J]. Complement Ther Med, 2020, 48: 102234. doi:10.1016/j.ctim.2019.102234 [27] Bargiel P, Szczuko M, Stachowska L, et al. Microbiome metabolites and thyroid dysfunction[J]. J Clin Med, 2021, 10(16): 3609. doi:10.3390/jcm10163609 [28] Cayres LCF, de Salis LVV, Rodrigues GSP, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis[J]. Front Immunol, 2021, 12: 579140. doi:10.3389/fimmu.2021.579140 [29] Khakisahneh S, Zhang XY, Nouri Z, et al. Cecal microbial transplantation attenuates hyperthyroid-induced thermogenesis in Mongolian gerbils[J]. Microb Biotechnol, 2022, 15(3): 817-831. doi:10.1111/1751-7915.13793 [30] Huo DX, Cen CP, Chang HB, et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves' disease patients through the gut-thyroid axis[J]. Commun Biol, 2021, 4(1): 1046. doi:10.1038/s42003-021-02587-z [31] Martínez FG, Moreno-Martin G, Pescuma M, et al. Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids[J]. Front Bioeng Biotechnol, 2020, 8: 506. doi:10.3389/fbioe.2020.00506 [32] Köhrle J. Selenium and the thyroid[J]. Curr Opin Endocrinol Diabetes Obes, 2013, 20(5): 441-448. doi:10.1097/01.med.0000433066.24541.88 [33] Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, et al. Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases[J]. Front Nutr, 2021, 8: 685317. doi:10.3389/fnut.2021.685317 [34] Lopez CA, Skaar EP. The impact of dietary transition metals on host-bacterial interactions[J]. Cell Host Microbe, 2018, 23(6): 737-748. doi:10.1016/j.chom.2018.05.008 [35] Kortman GA, Raffatellu M, Swinkels DW, et al. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective[J]. FEMS Microbiol Rev, 2014, 38(6): 1202-1234. doi:10.1111/1574-6976.12086 [36] Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab, 2019, 30(8): 479-490. doi:10.1016/j.tem.2019.05.008 [37] Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota[J]. FASEB J, 2011, 25(7): 2492-2499. doi:10.1096/fj.11-181990 [38] Su XH, Zhao Y, Li Y, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis[J]. Clin Sci(Lond), 2020, 134(12): 1521-1535. doi:10.1042/CS20200475 [39] Shin NR, Bose S, Wang JH, et al. Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models[J]. FASEB J, 2020, 34(6): 8686-8701. doi:10.1096/fj.201903091RR [40] Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Med, 2017, 9(1): 103. doi:10.1186/s13073-017-0490-5 [41] Bílek R, Dvo ráková M, Grimmichová T, et al. Iodine, thyroglobulin and thyroid gland[J]. Physiol Res, 2020, 69(Suppl 2): S225-S236. doi:10.33549/physiolres.934514 [42] Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product[J]. Appl Environ Microbiol, 2004, 70(10): 5810-5817. doi:10.1128/AEM.70.10.5810-5817.2004 [43] Zhao FY, Feng J, Li J, et al. Alterations of the gut microbiota in hashimoto's thyroiditis patients[J]. Thyroid, 2018, 28(2): 175-186. doi:10.1089/thy.2017.0395 [44] Jiang W, Yu XQ, Kosik RO, et al. Gut microbiota may play a significant role in the pathogenesis of Graves' disease[J]. Thyroid, 2021, 31(5): 810-820. doi:10.1089/thy.2020.0193 [45] Covelli D, Ludgate M. The thyroid, the eyes and the gut: a possible connection[J]. J Endocrinol Invest, 2017, 40(6): 567-576. doi:10.1007/s40618-016-0594-6 [46] Yan HX, An WC, Chen F, et al. Intestinal microbiota changes in Graves'disease: a prospective clinical study[J]. Biosci Rep, 2020, 40(9): BSR20191242. doi:10.1042/BSR20191242 [47] Chang SC, Lin SF, Chen ST, et al. Alterations of gut microbiota in patients with Graves' disease[J]. Front Cell Infect Microbiol, 2021, 11: 663131. doi:10.3389/fcimb.2021.663131 [48] Reyes-Díaz A, Mata-Haro V, Hernández J, et al. Milk fermented by specific Lactobacillus strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model[J]. Nutrients, 2018, 10(6): E691. doi:10.3390/nu10060691 [49] Liu SM, An YX, Cao B, et al. The composition of gut microbiota in patients bearing hashimoto's thyroiditis with euthyroidism and hypothyroidism[J]. Int J Endocrinol, 2020, 2020: 5036959. doi:10.1155/2020/5036959 [50] 黄艳芬, 刘湘红, 伍浩, 等. 肠黏膜屏障与肠道菌群的相互关系[J]. 中国微生态学杂志, 2019, 31(12): 1465-1469, 1474. doi:10.13381/j.cnki.cjm.201912021 HUANG Yanfen, LIU Xianghong, WU Hao, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chinese Journal of Microecology, 2019, 31(12): 1465-1469, 1474. doi:10.13381/j.cnki.cjm.201912021 [51] Kiseleva EP, Mikhailopulo KI, Sviridov OV, et al. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases[J]. Benef Microbes, 2011, 2(2): 139-154. doi:10.3920/BM2010.0011 [52] 耿仕涛, 卢昆, 张尊月, 等. 肠道菌群对肿瘤微环境调节的研究进展[J]. 肿瘤学杂志, 2020, 26(11): 946-952. doi:10.11735/j.issn.1671-170X.2020.11.B004 GENG Shitao, LU Kun, ZHANG Zunyue, et al. Progress on regulation of intestinal flora on tumor microenvironment[J]. Chinese Clinical Oncology, 2020, 26(11): 946-952. doi:10.11735/j.issn.1671-170X.2020.11.B004 [53] Zhang H, Sun LT. When human cells meet bacteria: precision medicine for cancers using the microbiota[J]. Am J Cancer Res, 2018, 8(7): 1157-1175. [54] Zhang JM, Zhang FH, Zhao CY, et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function[J]. Endocrine, 2019, 64(3): 564-574. doi:10.1007/s12020-018-1831-x [55] Feng J, Zhao FY, Sun JY, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients[J]. Int J Cancer, 2019, 144(11): 2728-2745. doi:10.1002/ijc.32007 [56] Yu XQ, Jiang W, Kosik RO, et al. Gut microbiota changes and its potential relations with thyroid carcinoma[J]. J Adv Res, 2021, 35: 61-70. doi:10.1016/j.jare.2021.04.001 [57] Zhang LX, Chen JY, Xu CY, et al. Effects of iodine-131 radiotherapy on Th17/Tc17 and Treg/Th17 cells of patients with differentiated thyroid carcinoma[J]. Exp Ther Med, 2018, 15(3): 2661-2666. doi:10.3892/etm.2017.5663 [58] McBrearty N, Arzumanyan A, Bichenkov E, et al. Short chain fatty acids delay the development of hepatocellular carcinoma in HBx transgenic mice[J]. Neoplasia, 2021, 23(5): 529-538. doi:10.1016/j.neo.2021.04.004 [59] Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10): 661-672. doi:10.1038/nrmicro3344 [60] Hashemi A, Villa CR, Comelli EM. Probiotics in early life: a preventative and treatment approach[J]. Food Funct, 2016, 7(4): 1752-1768. doi:10.1039/c5fo01148e [61] Schwartz DJ, Rebeck ON, Dantas G. Complex interactions between the microbiome and cancer immune therapy[J]. Crit Rev Clin Lab Sci, 2019, 56(8): 567-585. doi:10.1080/10408363.2019.1660303 [62] Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? [J]. Gut, 2020, 69(10): 1867-1876. doi:10.1136/gutjnl-2020-321153 [63] Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders[J]. J Neurogastroenterol Motil, 2021, 27(1): 19-34. doi:10.5056/jnm20149 [64] Taur Y, Coyte K, Schluter J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant[J]. Sci Transl Med, 2018, 10(460): eaap9489. doi:10.1126/scitranslmed.aap9489 [65] Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy[J]. J Exp Med, 2019, 216(1): 20-40. doi:10.1084/jem.20180448 [66] Routy B, le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. doi:10.1126/science.aan3706 [67] 斯伃恬, 应昊轩, 游丹铭. 肠道菌群在肿瘤免疫治疗中的新作用[J]. 重庆医学, 2020, 49(20): 3486-3490. doi:10.3969/j.issn.1671-8348.2020.20.038 SI Yutian, YING Haoxuan, YOU Danming. New roles of intestinal flora in tumor immunotherapy[J]. Chongqing Medicine, 2020, 49(20): 3486-3490. doi:10.3969/j.issn.1671-8348.2020.20.038 [68] Hills RD Jr, Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease[J]. Nutrients, 2019, 11(7): E1613. doi:10.3390/nu11071613 |
[1] | XIAO Fuliang, LIN Yun, PAN Xinliang. A clinical study on prophylactic central lymph node dissection in early cN0 papillary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 64-71. |
[2] | LI Jingjing, WU Xinxin, MAO Ning, ZHENG Guibin, MU Yakui, CHU Tongpeng, JIA Chuanliang, ZHENG Haitao, MI Jia, SONG Xicheng. CT-based radiomics nomogram for the preoperative prediction of central lymph node metastases of papillary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 51-59. |
[3] | XUE Gang, SUN Xinmin, LIN Xu, WU Jingfang. Expression and clinical significance of the KCNK5 double-pore potassium channel protein in papillary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 64-69. |
[4] | ZENG Bo, TIAN Xingde. Relationship between serum procalcitonin level of tumor-bearing mice and medullary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 86-91. |
[5] | QING Xiaoyan,XU Yiquan,LI Chao. Advances in molecular mechanisms of anaplastic thyroid cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 26-31. |
[6] | DENG Di, LIU Jun, LI Linke, WANG Ji, LIU Jifeng, LV Dan, WANG Haiyang, GAN Weigang, WANG Jun, LI Bo, CHEN Fei. Two-stage reconstructive strategy using a flap for non-circumferential tracheal defects [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 52-57. |
[7] | FANG Zhongju, ZHANG Yongxia, ZHAO Jiandong, ZONG Liang, ZHAI Xingyou, LI Xinjian, PENG Xin, REN Nan, CHEN Liwei, LIU Mingbo. Combined treatment of chylous leakage after lymph node dissection for thyroid cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 64-68. |
[8] | HUANG Naisi, MA Ben, GUAN Qing, WANG Yunjun, WEI Wenjun, LU Zhongwu, YANG Shuwen, XU Weibo, XIANG Jun, JI Qinghai, WANG Yu. Lateral neck lymph node mapping in thyroid cancer surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 69-74. |
[9] | Jingrong, CHEN Chun, MA Yan, XIE Jin. Clinical characteristics and risk factors for differentiated thyroid carcinoma in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 88-94. |
[10] | MA Chi, ZHENG Guibin, SUN Haiqing, WU Guochang, GUO Yawen, KONG Yang, SONG Xicheng, ZHENG Haitao. Enhanced recovery after surgery applied to 100 cases of thyroid cancer surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 107-110. |
[11] | XU Shuhang, LI Chunrui, LIU Chao. Optimal management of differentiated thyroid carcinoma in children. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(6): 12-15. |
[12] | SUN Bin, GUO Bomin, KANG Jie, DENG Xianzhao, WU Bo, FAN Youben. Standardization of the diagnosis and treatment of anaplastic thyroid carcinoma. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(6): 16-20. |
[13] | SUN Guochen, SUN Yan, ZHANG Hong, WANG Baowei. Clinical characteristics and treatment of differentiated thyroid carcinoma in children. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(6): 25-28. |
[14] | PAN Yongjie, PANG Wenhui, SUN Guochen, SUN Yan, ZHANG Hong. Expression and clinical significance of Heparanase and D2-40 in pediatric thyroid carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(6): 29-32. |
[15] | GONG Shanchun, ZHANG Haidong, ZHANG Qingxiang, HE Shuangba, YU Zhenkun. Meticulous operation of thyroid iobectomy. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 5-9. |
|