Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (1): 146-151.doi: 10.6040/j.issn.1673-3770.0.2023.165

• Review • Previous Articles    

Effects of antioxidant activity of curcumin in retinal degenerative diseases

XU Wanjing1, SUN Yuhao2, ZHAO Jun3   

  1. 1. Department of Ophthalmology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China2. Department of Otolaryngology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China3. Department of Ophthalmology, Linyi People's Hospital, Linyi 276000, Shandong, China
  • Published:2025-01-17

Abstract: The etiology and pathogenesis of retinal degenerative diseases are very complex, and the damage caused by oxidative stress cannot be ignored. Curcumin is a natural compound with a variety of biological activities. Owing to its distinct molecular structure, curcumin can scavenge reactive oxygen species and activate the antioxidant defense system. Moreover, because of its strong lipophilicity, curcumin can cross the blood-retinal barrier and act on the retina. Therefore, it has a high research value in the treatment of retinal degenerative diseases. This article reviews the application and related research progress of the antioxidant properties of curcumin in several retinal degenerative diseases.

Key words: Retinal degenerative diseases, Antioxidant, Curcumin, Reactive oxygen species

CLC Number: 

  • R775
[1] Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases[J]. Int J Mol Sci, 2021, 23(1): 386. doi:10.3390/ijms23010386
[2] Lin JB, Apte RS. NAD+ and sirtuins in retinal degenerative diseases: a look at future therapies[J]. Prog Retin Eye Res, 2018, 67: 118-129. doi:10.1016/j.preteyeres.2018.06.002
[3] 赵雅,马严,姚牧笛,等. 表观遗传修饰对视网膜神经退行性疾病的调控作用研究进展[J]. 眼科新进展, 2022, 42(7): 551-556. doi:10.13389/j.cnki.rao.2022.0113 ZHAO Ya, MA Yan, YAO Mudi, et al. Advances in epigenetic modification and its regulation in retinal neurodegenerative diseases[J]. Recent Advances in Ophthalmology, 2022, 42(7): 551-556. doi:10.13389/j.cnki.rao.2022.0113
[4] Hsueh YJ, Chen YN, Tsao YT, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. doi:10.3390/ijms23031255
[5] Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. doi:10.1007/s10571-023-01383-z
[6] Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases[J]. Mutat Res, 2013, 752(2): 153-171. doi:10.1016/j.mrrev.2013.01.001
[7] 席玉婕.基于整合策略的和血明目片干预视网膜退行性疾病的主效应环节及临床定位研究[D].天津:天津中医药大学,2022.doi:10.27368/d.cnki.gtzyy.2022.000318
[8] Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises[J]. Mol Pharm, 2007, 4(6): 807-818. doi:10.1021/mp700113r
[9] Farzaei MH, Zobeiri M, Parvizi F, et al. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective[J]. Nutrients, 2018, 10(7): 855. doi:10.3390/nu10070855
[10] Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183. doi:10.1016/j.redox.2015.01.002
[11] Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases[J]. Front Cell Neurosci, 2018, 12: 114. doi:10.3389/fncel.2018.00114
[12] Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247. doi:10.1038/35041687
[13] Saccà SC, Cutolo CA, Ferrari D, et al. The eye, oxidative damage and polyunsaturated fatty acids[J]. Nutrients, 2018, 10(6): 668. doi:10.3390/nu10060668
[14] Ikehata H, Ono T. The mechanisms of UV mutagenesis[J]. J Radiat Res, 2011, 52(2): 115-125. doi:10.1269/jrr.10175
[15] Feldheim DA, O'Leary DDM. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition[J]. Cold Spring Harb Perspect Biol, 2010, 2(11): a001768. doi:10.1101/cshperspect.a001768
[16] Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843. doi:10.1155/2019/5080843
[17] Chandrasekaran PR, Madanagopalan VG. Role of curcumin in retinal diseases-a review[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(5): 1457-1473. doi:10.1007/s00417-021-05542-0
[18] Rodríguez ML, Pérez S, Mena-Mollá S, et al. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies[J]. Oxid Med Cell Longev, 2019, 2019: 4940825. doi:10.1155/2019/4940825
[19] Kang QZ, Yang CX. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37: 101799. doi:10.1016/j.redox.2020.101799
[20] Davis MD, Gangnon RE, Lee LY, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17[J]. Arch Ophthalmol, 2005, 123(11): 1484-1498. doi:10.1001/archopht.123.11.1484
[21] Handa JT. How does the macula protect itself from oxidative stress?[J]. Mol Aspects Med, 2012, 33(4): 418-435. doi:10.1016/j.mam.2012.03.006
[22] Moreno ML, Mérida S, Bosch-Morell F, et al. Autophagy dysfunction and oxidative stress, two related mechanisms implicated in retinitis pigmentosa[J]. Front Physiol, 2018, 9: 1008. doi:10.3389/fphys.2018.01008
[23] Murakami Y, Nakabeppu Y, Sonoda KH. Oxidative stress and microglial response in retinitis pigmentosa[J]. Int J Mol Sci, 2020, 21(19): 7170. doi:10.3390/ijms21197170
[24] Gallenga CE, Lonardi M, Pacetti S, et al. Molecular mechanisms related to oxidative stress in retinitis pigmentosa[J]. Antioxidants, 2021, 10(6): 848. doi:10.3390/antiox10060848
[25] Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. doi:10.1001/jama.2014.3192
[26] Fan Gaskin JC, Shah MH, Chan EC. Oxidative stress and the role of NADPH oxidase in glaucoma[J]. Antioxidants, 2021, 10(2): 238. doi:10.3390/antiox10020238
[27] Cheng YH, Ko YC, Chang YF, et al. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment[J]. Exp Eye Res, 2019, 179: 179-187. doi:10.1016/j.exer.2018.11.017
[28] Izzotti A, Saccà SC, Cartiglia C, et al. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients[J]. Am J Med, 2003, 114(8): 638-646. doi:10.1016/S0002-9343(03)00114-1
[29] Adornetto A, Rombolà L, Morrone LA, et al. Natural products: evidence for neuroprotection to be exploited in glaucoma[J]. Nutrients, 2020, 12(10): 3158. doi:10.3390/nu12103158
[30] Rahban M, Habibi-Rezaei M, Mazaheri M, et al. Anti-viral potential and modulation of Nrf2 by curcumin: pharmacological implications[J]. Antioxidants, 2020, 9(12): 1228. doi:10.3390/antiox9121228
[31] Yu C, Xiao JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging[J]. Oxid Med Cell Longev, 2021, 2021: 6635460. doi:10.1155/2021/6635460
[32] Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases[J]. Br J Pharmacol, 2017, 174(11): 1325-1348. doi:10.1111/bph.13621
[33] Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers[J]. Br J Pharmacol, 2013, 169(8): 1672-1692. doi:10.1111/bph.12131
[34] 陈美霓,郭巍,郝琴,等. 姜黄素的药理作用、临床应用及机制研究进展[J]. 延安大学学报(医学科学版), 2021, 19(3): 96-99. doi:10.19893/j.cnki.ydyxb.2020-0166 CHEN Meini, GUO Wei, HAO Qin, et al. Research progress on pharmacological action, clinical application and mechanism of curcumin[J]. Journal of Yan'an University(Medical Science Edition), 2021, 19(3): 96-99. doi:10.19893/j.cnki.ydyxb.2020-0166
[35] Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin[J]. Chem Biol Interact, 2008, 174(1): 27-37. doi:10.1016/j.cbi.2008.05.003
[36] Qu Z, Sun JC, Zhang WN, et al. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease[J]. Free Radic Biol Med, 2020, 159: 87-102. doi:10.1016/j.freeradbiomed.2020.06.028
[37] Tsai YM, Chien, Lin LC, et al. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration[J]. Int J Pharm, 2011, 416(1): 331-338. doi:10.1016/j.ijpharm.2011.06.030
[38] Emoto Y, Yoshizawa K, Uehara N, et al. Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague-Dawley rats[J]. In Vivo, 2013, 27(5): 583-590.[PubMed]
[39] Vasireddy V, Chavali VR, Joseph VT, et al. Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation[J]. PLoS One, 2011, 6(6): e21193. doi:10.1371/journal.pone.0021193
[40] Maugeri A, Mazzone MG, Giuliano F, et al. Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy[J]. Oxid Med Cell Longev, 2018, 2018: 5407482. doi:10.1155/2018/5407482
[41] Zuo ZF, Zhang Q, Liu XZ. Protective effects of curcumin on retinal Müller cell in early diabetic rats[J]. Int J Ophthalmol, 2013, 6(4): 422-424. doi:10.3980/j.issn.2222-3959.2013.04.02
[42] Yang F, Yu JQ, Ke F, et al. Curcumin alleviates diabetic retinopathy in experimental diabetic rats[J]. Ophthalmic Res, 2018, 60(1): 43-54. doi:10.1159/000486574
[43] Woo JM, Shin DY, Lee SJ, et al. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen[J]. Mol Vis, 2012, 18: 901-908
[44] Chang YC, Chang WC, Hung KH, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress[J]. Front Aging Neurosci, 2014, 6: 191. doi:10.3389/fnagi.2014.00191
[45] Mandal MN, Patlolla JM, Zheng LX, et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death[J]. Free Radic Biol Med, 2009, 46(5): 672-679. doi:10.1016/j.freeradbiomed.2008.12.006
[46] Lin CB, Wu XM. Curcumin protects trabecular meshwork cells from oxidative stress[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4327-4332. doi:10.1167/iovs.16-19883
[47] Yue YK, Mo B, Zhao J, et al. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model[J]. J Ocul Pharmacol Ther, 2014, 30(8): 657-664. doi:10.1089/jop.2014.0022
[1] ZHANG Zhuan, LIU Tao, BAI Zhili, ZHOU Changming. Evolution of oxidative stress in the pathogenesis and treatment of noise-induced hearing loss. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 101-103.
[2] . Curcumin combined with resveratrol enhances their anti-tumoral effects in the head and neck carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(2): 67-72.
[3] LI Langen, WEI Wei, ZHANG Yufeng, Geriletu, YANG Jia, ZHANG Yanmei. The experiment of SIRT1 on against oxidative stress to retinal pigmented epithelium cells [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!