Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (1): 141-145.doi: 10.6040/j.issn.1673-3770.0.2023.278

• Review • Previous Articles    

Research progress in the treatment of allergic rhinitis with bacterial lysates

WANG Manxian, ZHENG Quan, YANG Liang   

  1. Department of Otorhinolaryngology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, China
  • Published:2025-01-17

Abstract: Allergic rhinitis(AR), a common disease in otorhinolaryngology, can seriously affect patients' work and life and impose an economic burden and is increasingly being considered a serious global public health problem. However, despite the growing in-depth study of the pathogenesis of AR and continuous improvement in its treatment methods, its prevalence rate is still rising. Finding a new, economical, and effective treatment is therefore an urgent issue. The hypothesis of hygiene holds that there is a high correlation between pathogen exposure and the prevalence of allergic diseases, and regulating host immune responses through pathogen exposure has therefore become a therapeutic target in the treatment of related diseases. Bacterial lysates(BLs)have been used in the treatment of respiratory diseases for decades. BLs constitute an antigen mixture that is obtained by cracking common pathogens in respiratory infections; it has an immunomodulatory function, can reduce inflammation, and can restore Th1/Th2 balance. In recent years, an increasing amount of research evidence has shown that BLs also have a good clinical effect in AR prevention and treatment. This article will review the research progress of BLs' functional mechanisms and clinical effects in AR treatment in recent years in order to improve clinical workers' understanding of BLs in AR treatment.

Key words: Allergic rhinitis, Bacterial lysates, Immunomodulation, Th2, IgE

CLC Number: 

  • R765.21
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年,修订版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828
[2] 倪璟滋, 万文锦. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3)110-115, 122. doi: 10.6040/j.issn.1673-3770.1.2021.165 NI Jingzi, WAN Wenjin. Research progress on health-related quality of life in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3)110-115, 122. doi: 10.6040/j.issn.1673-3770.1.2021.165
[3] Biering LMK, Tea S, Allan L. Allergic rhinitis and allergic sensitisation are still increasing among Danish adults[J]. Allergy, 2020, 75(3): 660-668. doi:10.1111/all.14046.
[4] Tong H, Gao L, Deng YQ, et al. Prevalence of allergic rhinitis and associated risk factors in 6 to 12 years schoolchildren from Wuhan in central China: a cross-sectional study[J]. Am J Rhinol Allergy, 2020, 34(5): 632-641. doi:10.1177/1945892420920499
[5] Li F, Zhou YC, Li SH, et al. Prevalence and risk factors of childhood allergic diseases in eight metropolitan cities in China: a multicenter study[J]. BMC Public Health, 2011, 11: 437. doi:10.1186/1471-2458-11-437
[6] Ma TT, Wang XD, Zhuang Y, et al. Prevalence and risk factors for allergic rhinitis in adults and children living in different grassland regions of Inner Mongolia[J]. Allergy, 2020, 75(1): 234-239. doi:10.1111/all.13941
[7] Sasaki M, Morikawa E, Yoshida K, et al. The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children: findings from 3 nationwide cross-sectional surveys between 2005 and 2015[J]. Allergy, 2019, 74(8): 1572-1575. doi:10.1111/all.13773
[8] Avdeeva KS, Reitsma S, Fokkens WJ. Direct and indirect costs of allergic and non-allergic rhinitis in the Netherlands[J]. Allergy, 2020, 75(11): 2993-2996. doi:10.1111/all.14457
[9] Esposito S, Soto-Martinez ME, Feleszko W, et al. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence[J]. Curr Opin Allergy Clin Immunol, 2018, 18(3): 198-209. doi:10.1097/ACI.0000000000000433
[10] Meng Q, Li P, Li Y, et al. Broncho-vaxom alleviates persistent allergic rhinitis in patients by improving Th1/Th2 cytokine balance of nasal mucosa[J]. Rhinology, 2019, 57(6): 451-459. doi:10.4193/Rhin19.161
[11] Okubo K, Kurono Y, Ichimura K, et al. Japanese guidelines for allergic rhinitis 2020[J]. Allergol Int, 2020, 69(3): 331-345. doi:10.1016/j.alit.2020.04.001
[12] Muñoz-Bellido FJ, Moreno E, Dávila I. Dupilumab: a review of present indications and off-label uses[J]. J Investig Allergol Clin, 2022, 32(2): 97-115. doi:10.18176/jiaci.0682
[13] Gonzalez-Figueroa P, Roco JA, Papa I, et al. Follicular regulatory T cells produce neuritin to regulate B cells[J]. Cell, 2021, 184(7): 1775-1789.e19. doi:10.1016/j.cell.2021.02.027
[14] Golebski K, Layhadi JA, Sahiner U, et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response[J]. Immunity, 2021, 54(2): 291-307.e7. doi:10.1016/j.immuni.2020.12.013
[15] Edwards MR, Walton RP, Jackson DJ, et al. The potential of anti-infectives and immunomodulators as therapies for asthma and asthma exacerbations[J]. Allergy, 2018, 73(1): 50-63. doi:10.1111/all.13257
[16] Yin J, Xu BP, Zeng XT, et al. Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2018, 54: 198-209. doi:10.1016/j.intimp.2017.10.032
[17] Ferrara F, Rial A, Suárez N, et al. Polyvalent bacterial lysate protects against pneumonia independently of neutrophils, IL-17A or caspase-1 activation[J]. Front Immunol, 2021, 12: 562244. doi:10.3389/fimmu.2021.562244
[18] Parola C, Salogni L, Vaira X, et al. Selective activation of human dendritic cells by OM-85 through a NF-kB and MAPK dependent pathway[J]. PLoS One, 2013, 8(12): e82867. doi:10.1371/journal.pone.0082867
[19] Luan H, Zhang Q, Wang L, et al. OM85-BV induced the productions of IL-1β, IL-6, and TNF-α via TLR4- and TLR2-mediated ERK1/2/NF-κB pathway in RAW264.7 cells[J]. J Interf Cytokine Res, 2014, 34(7): 526-536. doi:10.1089/jir.2013.0077
[20] Sun Yuting, Zhou Liyu, Chen Weikai, et al. Immune metabolism: a bridge of dendritic cells function[J]. Int Rev Immunol, 2022, 41(3):313-325. doi: 10.1080/08830185.2021.1897124
[21] Suárez N, Ferrara F, Rial A, et al. Bacterial lysates as immunotherapies for respiratory infections: methods of preparation[J]. Front Bioeng Biotechnol, 2020, 8: 545. doi:10.3389/fbioe.2020.00545
[22] Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma[J]. Ann Allergy Asthma Immunol, 2015, 114(5): 364-369. doi:10.1016/j.anai.2015.02.008
[23] Le Souëf P. Viral infections in wheezing disorders[J]. Eur Respir Rev, 2018, 27(147): 170133. doi:10.1183/16000617.0133-2017
[24] de Boer GM, Zókiewicz J, Strzelec KP, et al. Bacterial lysate therapy for the prevention of wheezing episodes and asthma exacerbations: a systematic review and meta-analysis[J]. Eur Respir Rev, 2020, 29(158): 190175. doi:10.1183/16000617.0175-2019
[25] Lu YM, Li YQ, Xu LY, et al. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children[J]. Pharmacology, 2015, 95(3/4): 139-144. doi:10.1159/000377683
[26] Liu CT, Huang R, Yao RJ, et al. The immunotherapeutic role of bacterial lysates in a mouse model of asthma[J]. Lung, 2017, 195(5): 563-569. doi:10.1007/s00408-017-0003-8
[27] Bartkowiak-Emeryk M, Emeryk A, Roliński J, et al. Impact of polyvalent mechanical bacterial lysate on lymphocyte number and activity in asthmatic children: a randomized controlled trial[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 10. doi:10.1186/s13223-020-00503-4
[28] Dang AT, Pasquali C, Ludigs K, et al. OM-85 is an immunomodulator of interferon-β production and inflammasome activity[J]. Sci Rep, 2017, 7(1): 1-9. doi:10.1038/srep43844
[29] Janeczek K, Emeryk A, Rachel M, et al. Polyvalent mechanical bacterial lysate administration improves the clinical course of grass pollen-induced allergic rhinitis in children: a randomized controlled trial[J]. J Allergy Clin Immunol Pract, 2021, 9(1):453-62. doi: 10.1016/j.jaip.2020.08.025
[30] Cardinale F, Lombardi E, Rossi O, et al. Epithelial dysfunction, respiratory infections and asthma: the importance of immunomodulation. A focus on OM-85[J]. Expert Rev Respir Med, 2020, 14(10):1019-1026. doi: 10.1080/17476348.2020.1793673
[31] Jurkiewicz D, Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections[J]. Otolaryngol Pol, 2018, 72(5): 1-8. doi:10.5604/01.3001.0012.7216
[32] Cao CQ, Wang JH, Li YN, et al. Efficacy and safety of OM-85 in paediatric recurrent respiratory tract infections which could have a possible protective effect on COVID-19 pandemic: a meta-analysis[J]. Int J Clin Pract, 2021, 75(5): e13981. doi:10.1111/ijcp.13981
[33] Esposito S, Cassano M, Cutrera R, et al. Expert consensus on the role of OM-85 in the management of recurrent respiratory infections: a Delphi study[J]. Hum Vaccin Immunother, 2022, 18(6): 2106720. doi:10.1080/21645515.2022.2106720
[34] Cantarutti A, Barbieri E, Scamarcia A, et al. Use of the bacterial lysate OM-85 in the paediatric population in Italy: a retrospective cohort study[J]. Int J Environ Res Public Health, 2021, 18(13): 6871. doi:10.3390/ijerph18136871
[35] Esposito S, Bianchini S, Bosis S, et al. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections[J]. J Transl Med, 2019, 17(1): 284. doi:10.1186/s12967-019-2040-y
[36] Koatz AM, Coe NA, Cicerán A, et al. Clinical and immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections[J]. Lung, 2016, 194(4): 687-697. doi:10.1007/s00408-016-9880-5
[37] Cinicola BL, Brindisi G, Capponi M, et al. The allergic phenotype of children and adolescents with selective IgA deficiency: a longitudinal monocentric study[J]. J Clin Med, 2022, 11(19): 5705. doi:10.3390/jcm11195705
[38] Banche G, Allizond V, Mandras N, et al. Improvement of clinical response in allergic rhinitis patients treated with an oral immunostimulating bacterial lysate: in vivo immunological effects[J]. Int J Immunopathol Pharmacol, 2007, 20(1): 129-138. doi:10.1177/039463200702000115
[39] Janeczek K, Emeryk A, Rapiejko P. Effect of polyvalent bacterial lysate on the clinical course of pollen allergic rhinitis in children[J]. Pdia, 2019, 36(4): 504-505. doi:10.5114/ada.2019.87457
[40] Kowalska M, Emeryk A, Janeczek K, et al. Effect of nasal polivalent bacterial lysate on the clinical course of seasonal allergic rhinitis in children-preliminary study[C] //Paediatric asthma and allergy. European Respiratory Society, 2020: 56(suppl 64): 1208. doi:10.1183/13993003.congress-2020.1208
[41] Kaczynska A, Klosinska M, Janeczek K, et al. Promising immunomodulatory effects of bacterial lysates in allergic diseases[J]. Front Immunol, 2022, 13: 907149. doi:10.3389/fimmu.2022.907149
[42] Janeczek K, Kaczyńska A, Emeryk A, et al. Perspectives for the use of bacterial lysates for the treatment of allergic rhinitis: a systematic review[J]. J Asthma Allergy, 2022, 15: 839-850. doi:10.2147/jaa.s360828
[43] Janeczek K, Kowalska W, Zarobkiewicz M, et al. Effect of immunostimulation with bacterial lysate on the clinical course of allergic rhinitis and the level of gdT, iNKT and cytotoxic T cells in children sensitized to grass pollen allergens: A randomized controlled trial[J]. Front Immunol, 2023, 14:1073788. doi: 10.3389/fimmu.2023.1073788
[1] YANG Gui, HU Tianyong, HE Haipeng, MA Li, WEI Haifeng, HUANG Jiamin, LIU Zhiqiang. Preparation of a Der p2 B cell epitope RNA vaccine and its specific IgE inhibition in mice with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(5): 6-12.
[2] LIU Chang, FANG Hongyan, LIU Xiao, FU Dongna, WANG He, WANG Jing, YANG Jingpu. Analysis of sensitization characteristics of Artemisia pollen in autumn allergic rhinitis in the Changchun area of China [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(5): 13-19.
[3] SHEN Jiaqi, LI Xiaosa, BI Yanlong, ZHANG Jingfa. The application of artificial intelligence in screening, diagnosis and prognosis of diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(5): 153-159.
[4] ZHANG Jie, CHEN Min, SHEN Zhengzheng, WU Yuhua, LIU Yuanhu, SUN Hao, TAN Xinhua, NI Shuren, YANG Shuxun, SHI Xuezheng, NI Xin. Study on the correlation between allergic rhinitis and coronavirus disease-2019 infection and symptoms in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 36-42.
[5] ZHU Lang, LIU Zhiqi. Utilization of real-world data from mobile health applications in therapeutic interventions for allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 135-139.
[6] ZHANG Jingyi, DONG Xiangyi, MU Yakui, SONG Xicheng. Research progress on pyroptosis in otorhinolaryngology diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 140-148.
[7] ZHANG Lijing, FENG Xiaoxing, LIU Nanxian, ZHAO Huiming, CHEN Yuehua. Graphene cured nasal mask combined with subcutaneous specific immunotherapy of dust mite in patients with dust mite allergic rhinitis application analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 26-32.
[8] XIE Yulin, LEI Dapeng. Advances in the pathological study of artificial intelligence in the lymph node metastasis of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 124-129.
[9] SU Riguge, LI Hua, WU Richaifu, HAN Eerdemutu, MENG Yongmei. Elucidation of the Mongolian medicine Huricha-6 mechanism in treating allergic rhinitis via network pharmacology and animal experiments [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 41-51.
[10] WU Lili, QU Yi. Application of optical tomography angiography and artificial intelligence in choroidal neovascularization secondary to pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 144-149.
[11] ZHANG Zhen, YANG Zhuoying, ZHOU Jiani, ZHANG Dawei, CHEN Renjie. Efficacy and safety of ciclesonide nasal spray in the treatment of seasonal allergic rhinitis:a Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 13-20.
[12] WU Richaifu, SU Riguge, MENG Yongmei. Establishment and evaluation of ovalbumin induced allergic rhinitis guinea pig model and preliminary analysis of Mongolian medicine tongue and urine diagnosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 32-38.
[13] ZHU Han, LIU Xuexia, ZHANG Hua. Study on the role of autophagy in the pathogenesis of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 79-86.
[14] SUN Xiwen, LUO Chunyu, LI Zhipeng, ZHANG Weitian. Role of ferroptosis in inflammatory diseases of the respiratory tract: a review of recent advances [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 24-32.
[15] ZHANG Yitong, LI Qingxiang, SHI Zhenghao, SHANG Lei, YUAN Yuqi, CAO Zine, MA Lina, LIU Haiqin, REN Xiaoyong, SHI Yewen. The sleep structure of Children with obstructive sleep apnea and the development of a sleep structure interpretation model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!