Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 1-7.doi: 10.6040/j.issn.1673-3770.0.2023.382

• Original Article •    

Electrophysiological characteristics of deep projections from bilateral auditory cortex

LU Jiantao, ZHONG Jie, LIU Shaofeng   

  1. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou 511300, Guangdong, China
  • Published:2025-09-19

Abstract: Objective This study aimed to investigate the electrophysiological characteristics of deep projections from bilateral auditory cortices, with a focus on the excitatory pyramidal neurons and their projections to the contralateral auditory cortex via the corpus callosum. The goal was to gain a better understanding of the projection localization of auditory information in bilateral auditory brain regions and the electrophysiological properties of target neurons. Methods Mice were used as the experimental subjects. Optogenetic viruses were injected into the auditory cortex to manipulate the activity of the corpus callosum. Electrophysiological and immunohistochemistry techniques were employed. Results The primary regions where deep neurons in the auditory cortex projected via the corpus callosum were layer 5B and layer 6 of the contralateral auditory cortex. Both layers exhibited monosynaptic connections, although the extent of information input, electrophysiological properties, and morphology differed significantly. Conclusion Direct fiber connections exist between deep neurons in bilateral auditory cortices. The projections to layer 5B and layer 6 of the contralateral side represent two distinct types of excitatory neurons, which likely contribute to different regulatory roles in auditory information processing.

Key words: Auditory cortex, Corpus callosum, Pyramidal neurons, Electrophysiology, Optogenetics

CLC Number: 

  • R764.4
[1] Schutter DJ, Harmon-Jones E. The corpus callosum: a commissural road to anger and aggression[J]. Neurosci Biobehav Rev, 2013, 37(10 pt 2): 2481-2488. doi:10.1016/j.neubiorev.2013.07.013
[2] Tezuka Y, Hagihara KM, Ohki K, et al. Developmental stage-specific spontaneous activity contributes to callosal axon projections[J]. Elife, 2022, 11: e72435. doi:10.7554/elife.72435
[3] Blaauw J, Meiners LC. The splenium of the corpus callosum: embryology, anatomy, function and imaging with pathophysiological hypothesis[J]. Neuroradiology, 2020, 62(5): 563-585. doi:10.1007/s00234-019-02357-z
[4] De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum[J]. Development, 2020, 147(18): dev189738. doi:10.1242/dev.189738
[5] Suárez R, Gobius I, Richards LJ. Evolution and development of interhemispheric connections in the vertebrate forebrain[J]. Front Hum Neurosci, 2014, 8: 497. doi:10.3389/fnhum.2014.00497
[6] Zhong W, Zheng W, Ji X. Spatial distribution of inhibitory innervations of excitatory pyramidal cells by major interneuron subtypes in the auditory cortex[J]. Bioengineering(Basel), 2023, 10(5): 547. doi:10.3390/bioengineering10050547
[7] Rock C, Apicella AJ. Callosal projections drive neuronal-specific responses in the mouse auditory cortex[J]. J Neurosci, 2015,35(17):6703-6713. doi: 10.1523/JNEUROSCI.5049-14.2015
[8] Su JJ, Paul LK, Graves M, et al. Verbal problem-solving in agenesis of the corpus callosum: analysis using semantic similarity[J]. Neuropsychology, 2023, 37(5): 615-620. doi:10.1037/neu0000894
[9] 罗伊雯, 肖永涛, 高敏倩, 等. 慢性主观性耳鸣的声治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 13-23. doi:10.6040/j.issn.1673-3770.0.2023.108 LUO Yiwen, XIAO Yongtao, GAO Minqian, et al. Progress in acoustic therapy for chronic subjective tinnitus[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 13-23. doi:10.6040/j.issn.1673-3770.0.2023.108
[10] 刘耀谦, 张振, 张博雅, 等. 腺相关病毒AAV2/Anc80L65对原代培养的螺旋神经元形态标记效能的探究[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 1-6, 20. doi:10.6040/j.issn.1673-3770.0.2022.129 LIU Yaoqian, ZHANG Zhen, ZHANG Boya, et al. Effects of a neuron specific AAV2 viral vector on the imaging efficiency of primary cultured spiral ganglion neurons in vitro[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 1-6, 20. doi:10.6040/j.issn.1673-3770.0.2022.129
[11] 何天齐, 李敏, 王雪楠, 等. 腺相关病毒在大鼠丘脑纹状体通路中的应用[J].山东大学学报(医学版), 2020, 58(3): 10. doi:10.6040/j.issn.1671-7554.0.2019.1369 HE Tianqi, LI Min, WANG Xuenan, et al. Application of adeno-associated virus on thalamic striatum pathway in rats[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 65-74.doi:10.6040/j.issn.1671-7554.0.2019.1369
[12] Ji X, Liu W, Xiao H, et al. The activated synaptic terminals beyond the light illumination range affect the results of optogenetics[J]. Neuroreport, 2022, 33(7): 281-290. doi:10.1097/wnr.0000000000001785
[13] Wu K, Wang D, Wang Y, et al. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions[J]. Neuron, 2023, 111(22): 3650-3667.e6. doi:10.1016/j.neuron.2023.08.008
[14] 张丽丽, 王海波. 神经逆行示踪法在面神经损伤修复方面的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 182-184 ZHANG Lili, WANG Haibo. Application of nerve retrograde tracing method in the repair of facial nerve injury[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2008, 22(2): 182-184
[15] Khasawneh RR, Abu-El-Rub E, Alzu'bi A, et al. Corpus callosum anatomical changes in Alzheimer patients and the effect of acetylcholinesterase inhibitors on corpus callosum morphometry[J]. PLoS One, 2022, 17(7): e0269082. doi:10.1371/journal.pone.0269082
[16] Brodovskaya A, Batabyal T, Shiono S, et al. Distinct roles of rodent thalamus and corpus callosum in seizure generalization[J]. Ann Neurol, 2022, 91(5): 682-696. doi:10.1002/ana.26338
[17] Lee S, Pyun SB, Choi KW, et al. Shape and volumetric differences in the corpus callosum between patients with major depressive disorder and healthy controls[J]. Psychiatry Investig, 2020, 17(9): 941-950. doi:10.30773/pi.2020.0157
[18] Fan Q, Tian Q, Ohringer NA, et al. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI[J]. Neuroimage, 2019, 191: 325-336. doi:10.1016/j.neuroimage.2019.02.036
[19] Paul LK, Pazienza SR, Brown WS. Alexithymia and somatization in agenesis of the corpus callosum[J]. Soc Cogn Affect Neurosci, 2021, 16(10): 1071-1078. doi:10.1093/scan/nsab056
[20] Wang Y, Li X, Zhang C, et al. Selective micro-structural integrity impairment of the isthmus subregion of the corpus callosum in alcohol-dependent males[J]. BMC Psychiatry, 2019, 19(1): 96. doi:10.1186/s12888-019-2079-6
[21] Mangum RW, Miller JS, Brown WS, et al. Everyday executive function and self-awareness in agenesis of the corpus callosum[J]. J Int Neuropsychol Soc, 2021, 27(10): 1037-1047. doi:10.1017/s1355617721000096
[22] Frederiksen KS, Garde E, Skimminge A, et al. Corpus callosum atrophy in patients with mild Alzheimer's disease[J]. Neurodegener Dis, 2011, 8(6): 476-482. doi:10.1159/000327753
[23] Sarrazin S, d'Albis MA, McDonald C, et al. Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study[J]. J Psychiatry Neurosci, 2015, 40(5): 352-359. doi:10.1503/jpn.140262
[24] Triplett JD, Qiu J, O'Brien B, et al. Diagnosis, differential diagnosis and misdiagnosis of Susac syndrome[J]. Eur J Neurol, 2022, 29(6): 1771-1781. doi:10.1111/ene.15317
[25] Na JH, Kim HD, Lee YM. Effective application of corpus callosotomy in pediatric intractable epilepsy patients with mitochondrial dysfunction[J]. Ther Adv Neurol Disord, 2022, 15: 17562864221092551. doi:10.1177/17562864221092551
[26] Okanishi T, Fujimoto A. Corpus callosotomy for controlling epileptic spasms: a proposal for surgical selection[J]. Brain Sci, 2021, 11(12): 1601. doi:10.3390/brainsci11121601
[27] 江涛. 类脑智能在脑科学的前沿应用[J]. 山东大学学报(医学版), 2020, 58(8): 10-13.doi: 10.6040/j.issn.1671-7554.0.2020.0577 JIANG Tao. The application of brain-like intelligence in the frontiers of brain science[J]. Journal of Shandong University(Health Sciences), 2020, 58(8): 10-13.doi: 10.6040/j.issn.1671-7554.0.2020.0577
[28] Douglas RJ, Martin KA. Neuronal circuits of the neocortex[J]. Annu Rev Neurosci, 2004, 27: 419-451. doi:10.1146/annurev.neuro.27.070203.144152
[29] Ji XY, Zingg B, Mesik L, et al. Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity[J]. Cereb Cortex, 2016, 26(6): 2612-2625. doi:10.1093/cercor/bhv099
[30] Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles[J]. Front Neuroanat, 2023, 17: 1296779. doi:10.3389/fnana.2023.1296779
[31] Westerhausen R, Fjell AM, Kompus K, et al. Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees(Pan troglodytes)and humans[J]. J Comp Neurol, 2021, 529(7): 1584-1596. doi:10.1002/cne.25039
[1] WANG Xinyu, GAO Lifen, LU Hui, SONG Wenqi, YANG Yu. Related retinal manifestations in Parkinson's disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 156-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!