Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 156-162.doi: 10.6040/j.issn.1673-3770.0.2023.409

• Review • Previous Articles     Next Articles

Related retinal manifestations in Parkinson's disease

WANG Xinyu1,2, GAO Lifen1,2, LU Hui2, SONG Wenqi2, YANG Yu2   

  1. 1. Weifang Medical College, Weifang 261053, Shandong, China 2. Ophthalmology Department, Zibo Central Hospital, Zibo 255000, Shandong, China
  • Online:2024-03-20 Published:2024-03-29

Abstract: Parkinson's disease is a neurodegenerative disorder characterized by bradykinesia, resting tremor, and other symptoms caused by abnormal α-synuclein deposition in the nervous system and dopaminergic nerve damage. As visual impairments can be detected during the early stages, functional and structural changes in the retina can play an important role in diagnosis and treatment strategies for Parkinson's disease. This review examines the retinal changes associated with Parkinson's disease, such as a decreased number of retinal dopaminergic neurons, thinning of the retinal nerve fiber layer and macula(measured by using optical coherence tomography), and a decrease in amplitude and shortening of the latency period in electroretinograms, to explain the effects of Parkinson's disease on the retina. This paper concludes that retinal abnormalities in patients with Parkinson's can be used as a potential marker for early assessment of Parkinson's disease onset and can help to stage the disease, which is important for diagnosis and therapeutic strategies.

Key words: Parkinson's disease, Dopamine, Retinal electrophysiology, Optical coherence tomography angiography, Retinal microvasculature

CLC Number: 

  • R774.1
[1] Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8): 901-905. doi:10.1007/s00702-017-1686-y
[2] Tansey MG, Wallings RL, Houser MC, et al. Inflammation and immune dysfunction in Parkinson disease[J]. Nat Rev Immunol, 2022, 22(11): 657-673. doi:10.1038/s41577-022-00684-6
[3] Elbaz A, Carcaillon L, Kab S, et al. Epidemiology of Parkinson's disease[J]. Rev Neurol, 2016, 172(1): 14-26. doi:10.1016/j.neurol.2015.09.012
[4] Ming W, Palidis DJ, Spering M, et al. Visual contrast sensitivity in early-stage Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5696. doi:10.1167/iovs.16-20025
[5] Han G, Han JS, Han K, et al. Visual acuity and development of Parkinson's disease: a nationwide cohort study[J]. Mov Disord, 2020, 35(9): 1532-1541. doi:10.1002/mds.28184
[6] Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and Parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study[J]. Brain, 2019, 142(3): 744-759. doi:10.1093/brain/awz030
[7] Shi C, Chen YH, Kwapong WR, et al. Characterization by fractal dimension analysis of the retinal capillary network in parkinson disease[J]. Retina, 2020, 40(8): 1483-1491. doi:10.1097/iae.0000000000002641
[8] Ridder A, Müller MLTM, Kotagal V, et al. Impaired contrast sensitivity is associated with more severe cognitive impairment in Parkinson disease[J]. Parkinsonism Relat Disord, 2017, 34: 15-19. doi:10.1016/j.parkreldis.2016.10.006
[9] Adam CR, Shrier E, Ding Y, et al. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in parkinson disease[J]. J Neuro Ophthalmol, 2013, 33(2): 137-142. doi:10.1097/wno.0b013e31828c4e1a
[10] Pellegrini M, Vagge A, Ferro Desideri LF, et al. Optical coherence tomography angiography in neurodegenerative disorders[J]. J Clin Med, 2020, 9(6): 1706. doi:10.3390/jcm9061706
[11] Marchesi N, Fahmideh F, Boschi F, et al. Ocular neurodegenerative diseases: interconnection between retina and cortical areas[J]. Cells, 2021, 10(9): 2394. doi:10.3390/cells10092394
[12] Liu H, Schaeffel F, Yang ZK, et al. GABAB receptor activation affects eye growth in chickens with visually induced refractive errors[J]. Biomolecules, 2023, 13(3): 434. doi:10.3390/biom13030434
[13] Elanwar R, Al Masry H, Ibrahim A, et al. Retinal functional and structural changes in patients with Parkinson's disease[J]. BMC Neurol, 2023, 23(1): 330. doi:10.1186/s12883-023-03373-6
[14] Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight[J]. J Pharmacol Sci, 2019, 140(1): 86-93. doi:10.1016/j.jphs.2019.03.006
[15] 刘凌,张美霞.近视的药物治疗[J].山东大学耳鼻喉眼学报, 2021. 35(4): 123-128.doi: 10.6040/j.issn.1673-3770.0.2020.313 LIU Ling, ZHANG Meixia. Drug therapy for myopia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 123-128. doi: 10.6040/j.issn.1673-3770.0.2020.313
[16] Indrieri A, Pizzarelli R, Franco B, et al. Dopamine, alpha-synuclein, and mitochondrial dysfunctions in parkinsonian eyes[J]. Front Neurosci, 2020, 14: 567129. doi:10.3389/fnins.2020.567129
[17] Mohana Devi S, Mahalaxmi I, Aswathy NP, et al. Does retina play a role in Parkinson's disease?[J]. Acta Neurol Belg, 2020, 120(2): 257-265. doi:10.1007/s13760-020-01274-w
[18] Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, et al. Dopaminergic retinal cell loss and visual dysfunction in parkinson disease[J]. Ann Neurol, 2020, 88(5): 893-906. doi:10.1002/ana.25897
[19] Zou MJ, Lian ZK, Young CA, et al. Improving effective lens position prediction for transscleral fixation of intraocular lens among congenital ectopia lentis patients[J]. Am J Ophthalmol, 2023, 252: 121-129. doi:10.1016/j.ajo.2023.03.021
[20] Ortuño-Lizarán I, Esquiva G, Beach TG, et al. Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson's disease[J]. Acta Neuropathol Commun, 2018, 6(1): 90. doi:10.1186/s40478-018-0596-z
[21] Normando EM, Davis BM, De Groef L, et al. The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain[J]. Acta Neuropathol Commun, 2016, 4(1): 86. doi:10.1186/s40478-016-0346-z
[22] Tran KKN, Wong VHY, Lim JKH, et al. Characterization of retinal function and structure in the MPTP murine model of Parkinson's disease[J]. Sci Rep, 2022, 12(1): 7610. doi:10.1038/s41598-022-11495-z
[23] Zhang YY, Zhang XG, Yue YH, et al. Retinal degeneration: a window to understand the origin and progression of Parkinson's disease?[J]. Front Neurosci, 2021, 15: 799526. doi:10.3389/fnins.2021.799526
[24] Beach TG, Carew J, Serrano G, et al. Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson's disease subjects[J]. Neurosci Lett, 2014, 571: 34-38. doi:10.1016/j.neulet.2014.04.027
[25] Ortuño-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity[J]. Mov Disord, 2018, 33(8): 1315-1324. doi:10.1002/mds.27392
[26] Tran KKN, Wong VHY, Hoang A, et al. Retinal alpha-synuclein accumulation correlates with retinal dysfunction and structural thinning in the A53T mouse model of Parkinson's disease[J]. Front Neurosci, 2023, 17: 1146979. doi:10.3389/fnins.2023.1146979
[27] Veys L, Vandenabeele M, Ortuño-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson's disease patients and animal models[J]. Acta Neuropathol, 2019, 137(3): 379-395. doi:10.1007/s00401-018-01956-z
[28] Marrocco E, Indrieri A, Esposito F, et al. α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells[J]. Sci Rep, 2020, 10(1): 9619. doi:10.1038/s41598-020-66497-6
[29] Murueta-Goyena A, Barrenechea M, Erramuzpe A, et al. Foveal remodeling of retinal microvasculature in Parkinson's disease[J]. Front Neurosci, 2021, 15: 708700. doi:10.3389/fnins.2021.708700
[30] Guan J, Pavlovic D, Dalkie N, et al. Vascular degeneration in Parkinson's disease[J]. Brain Pathol, 2013, 23(2): 154-164. doi:10.1111/j.1750-3639.2012.00628.x
[31] Yang PZ, Pavlovic D, Waldvogel H, et al. String vessel formation is increased in the brain of parkinson disease[J]. J Park Dis, 2015, 5(4): 821-836. doi:10.3233/jpd-140454
[32] Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in parkinson disease[J]. JAMA Ophthalmol, 2021, 139(2): 182-188. doi:10.1001/jamaophthalmol.2020.5730
[33] Christou EE, Konitsiotis S, Pamporis K, et al. Inner retinal layers' alterations of the microvasculature in early stages of Parkinson's disease: a cross sectional study[J]. Int Ophthalmol, 2023, 43(7): 2533-2543. doi:10.1007/s10792-023-02653-x
[34] Kamata Y, Hara N, Satou T, et al. Investigation of the pathophysiology of the retina and choroid in Parkinson's disease by optical coherence tomography[J]. Int Ophthalmol, 2022, 42(5): 1437-1445. doi:10.1007/s10792-021-02133-0
[35] Mello LGM, Paraguay IBB, Andrade TS, et al. Electroretinography reveals retinal dysfunction in Parkinson's disease despite normal high-resolution optical coherence tomography findings[J]. Parkinsonism Relat Disord, 2022, 101: 90-95. doi:10.1016/j.parkreldis.2022.06.018
[36] Netser R, Demmin DL, Dobkin R, et al. Flash electroretinography parameters and Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(1): 251-259. doi:10.3233/JPD-191830
[37] Huang J, Li Y, Xiao JJ, et al. Combination of multifocal electroretinogram and spectral-domain OCT can increase diagnostic efficacy of Parkinson's disease[J]. Parkinsons Dis, 2018: 4163239. doi:10.1155/2018/4163239
[38] Unlu M, Gulmez Sevim D, Gultekin M, et al. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson's disease[J]. Neurol Sci, 2018, 39(3): 533-541. doi:10.1007/s10072-018-3244-2
[39] Wong C, Ishibashi T, Tucker G, et al. Responses of the pigmented rabbit retina to NMPTP, a chemical inducer of Parkinsonism[J]. Exp Eye Res, 1985, 40(4): 509-519. doi:10.1016/0014-4835(85)90073-9
[40] He SB, Liu CY, Chen LD, et al. Meta-analysis of visual evoked potential and Parkinson's disease[J]. Parkinsons Dis, 2018: 3201308. doi:10.1155/2018/3201308
[41] Kaur M, Saxena R, Singh D, et al. Correlation between structural and functional retinal changes in parkinson disease[J]. J Neuroophthalmol, 2015, 35(3): 254-258. doi:10.1097/WNO.0000000000000240
[42] Huang J, Wang QP, Li K, et al. Spectral domain OCT can differentiate the retinal morphological changes of patients with Parkinson's disease in clinical middle stages[J]. Neurol Sci, 2020, 41(7): 1909-1912. doi:10.1007/s10072-020-04266-z
[43] Yenice O, Onal S, Midi I, et al. Visual field analysis in patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2008, 14(3): 193-198. doi:10.1016/j.parkreldis.2007.07.018
[44] 李玲,季晓燕,毛成洁,等. 早期帕金森病患者视网膜及视野改变的临床研究[J]. 中华内科杂志, 2015, 54(6): 521-524. doi:10.3760/cma.j.issn.0578-1426.2015.06.010 LI Ling, JI Xiaoyan, MAO Chengjie, et al. A clinical study of changes in retina and visual field in patients with early Parkinson's disease[J]. Chinese Journal of Internal Medicine, 2015, 54(6): 521-524. doi:10.3760/cma.j.issn.0578-1426.2015.06.010
[45] Xu B, Wang X, Guo JF, et al. Retinal microvascular density was associated with the clinical progression of Parkinson's disease[J]. Front Aging Neurosci, 2022, 14: 818597. doi:10.3389/fnagi.2022.818597
[46] Zou J, Liu KC, Li FL, et al. Combination of optical coherence tomography(OCT)and OCT angiography increases diagnostic efficacy of Parkinson's disease[J]. Quant Imaging Med Surg, 2020, 10(10): 1930-1939. doi:10.21037/qims-20-460
[47] Li Y, Wang XH, Zhang YQ, et al. Retinal microvascular impairment in Parkinson's disease with cognitive dysfunction[J]. Parkinsonism Relat Disord, 2022, 98: 27-31. doi:10.1016/j.parkreldis.2022.03.008
[48] Zhou M, Wu L, Hu QY, et al. Visual impairments are associated with retinal microvascular density in patients with Parkinson's disease[J]. Front Neurosci, 2021, 15: 718820. doi:10.3389/fnins.2021.718820
[49] Kwapong WR, Ye H, Peng CL, et al. Retinal microvascular impairment in the early stages of Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4115-4122. doi:10.1167/iovs.17-23230
[50] Zhao Y, Dai WJ, Liu DC. Quantitative analysis of related parameters of retinal nerve fiber layer and ganglion cell complex thickness in patients with different degrees of Parkinson's disease[J]. Aging Clin Exp Res, 2022, 34(10): 2355-2361. doi:10.1007/s40520-022-02211-y
[51] Zhang YF, Zhang D, Gao YZ, et al. Retinal flow density changes in early-stage Parkinson's disease investigated by swept-source optical coherence tomography angiography[J]. Curr Eye Res, 2021, 46(12): 1886-1891. doi:10.1080/02713683.2021.1933054
[52] 李颖颖, 冯洁, 李伟, 等. 缺血性脑卒中及其他神经退行性疾病对RNFL厚度的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273 LI Yingying, FENG Jie, LI Wei, et al. Effects of ischemic stroke and other neurodegenerative diseases on RNFL thickness[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273
[53] Verghese S, Berkowitz ST, Shah VM, et al. Assessment of retinal manifestations of Parkinson's disease using spectral domain optical coherence tomography: a study in Indian eyes[J]. Indian J Ophthalmol, 2022, 70(2): 448-452. doi:10.4103/ijo.IJO_1409_21
[54] Rascunà C, Cicero CE, Chisari CG, et al. Retinal thickness and microvascular pathway in Idiopathic Rapid eye movement sleep behaviour disorder and Parkinson's disease[J]. Parkinsonism Relat Disord, 2021, 88: 40-45. doi:10.1016/j.parkreldis.2021.05.031
[55] Robbins CB, Grewal DS, Thompson AC, et al. Identifying peripapillary radial capillary plexus alterations in Parkinson's disease using OCT angiography[J]. Ophthalmol Retina, 2022, 6(1): 29-36. doi:10.1016/j.oret.2021.03.006
[1] WU Lili, QU Yi. Application of optical tomography angiography and artificial intelligence in choroidal neovascularization secondary to pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 144-149.
[2] ZHANG Xiaohan, WEI Li, YANG Kaili, CHEN Haiyan, LI Yansong, WANG Ping. Study on the change of OCTA and its correlation with visual acuity in patients with CSC before and after TCM syndrome differentiation and treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 115-122.
[3] LI Pengwei, SU Guangming, LIU Jiangchuan, MU Yalin. Application of optical coherence tomography angiography in macular telangiectasia type 2 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 140-144.
[4] TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82.
[5] YANG Ru, ZHANG Yuguang, XU Xianghui, WU Xuelian, TAO Yuan, TAN Yue. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102.
[6] ZHANG Xinyu,,LEI Chunyan, ZHANG Meixia. Retinochoriodal changes associated with silicone oil tamponade detected by optical coherence tomography and optical coherence tomography angiography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 132-136.
[7] Ocular ischemic syndrome(OIS)is usually undiagnosed or misdiagnosed due to its asymptomatic onset, complicated ocular manifestations, and the lack of awareness, and patients with OIS have a higher mortality. Improving the understanding, diagnosis, and treatment of OIS through multidisciplinary collaboration is key to investigating and preventing systemic vascular events as well as decreasing blindness and mortality. This review summarizes the recent advances in the epidemiology, clinical diagnosis, and management of OIS.. Recent ocular ischemic syndrome advancesWANG Luping Overview HUANG Yingxiang, WANG Yanling Guidance Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 23-27.
[8] LI Rui, LI Yong, XIE Hongtao, YUE ZhangXian, LIU Zhaochen, YUAN huimin. Effects of intraocular lens implantation and postoperative intraocular pressure fluctuations on the fundus macular and optic disc vascular density [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 89-92.
[9] LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 139-142.
Full text



[1] YANG Changliang,HUANG Zhiwu,YAO Hangqi,ZHU Yong,SNU Yi . Study on auditory brainstem response[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 9 -13 .
[4] LIU Da-yu,PAN Xin-liang,LEI Da-peng,ZHANG Li-qiang,LUAN Xin-yong . Surgical treatment for medial wall pyriform sinus cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 8 -11 .
[6] LIU Yan,LIU Xin-yi,WANG Jin-ping,LI Da-jian . Measurement of the posterior tympanum and its clinical significance [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 218 -221 .
[7] ZHAO Min,WANG Shou-sen,ZHEN Ze-nian,CHEN Xian-ming,WANG Mao-xin . Sphenoid sinus and trans-sphenoid surgery under nasal endoscopy and microscopy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 244 -245 .
[9] WANG Hong-xia,WANG Peng-cheng . Expression of NSE,S100 and GFAP in retinoblastoma and its clinical significance[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 263 -264 .
[10] HUANG Fang,HUANG Hai-qiong,HUANG Jian-qiang,HE He-fan . Bronchoscopic video supervision system in infant bronchial foreign bodies[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 276 -277 .