Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (6): 82-91.doi: 10.6040/j.issn.1673-3770.0.2019.621
Previous Articles Next Articles
DONG Shikun, SHEN Yujie, ZHANG Liqing, ZHOU Han, ZHANG Jiacheng, DONG Weida
CLC Number:
[1] 冉雄文. PD-1/PD-L1通路抑制剂对头颈癌治疗的现状及发展前景[D]. 重庆: 重庆医科大学, 2018. [2] Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment[J]. Mayo Clin Proc, 2016, 91(3): 386-396. doi:10.1016/j.mayocp.2015.12.017. [3] Riva G, Biolatti M, Pecorari G, et al. PYHIN proteins and HPV: role in the pathogenesis of head and neck squamous cell carcinoma[J]. Microorganisms, 2019, 8(1): E14. doi:10.3390/microorganisms8010014. [4] Adelstein D, Gillison ML, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 2.2017[J]. J Natl Compr Canc Netw, 2017, 15(6): 761-770. doi:10.6004/jnccn.2017.0101. [5] 赵锦成, 石颖, 张颖, 等. 人头颈鳞癌细胞中CDH13的表达及其甲基化状态研究[J].山东大学耳鼻喉眼学报,2017, 31(4): 60-63. doi:10.6040/j.issn.1673-3770.0.2016.362 ZHAO Jincheng, SHI Ying, ZHANG Ying, et al. Expression and methylation patterns of CDH13 in human head and neck squamous carcinoma cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 60-63. doi:10.6040/j.issn.1673-3770.0.2016.362. [6] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J].山东大学耳鼻喉眼学报,2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. WU Jing LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. [7] 陈曦, 乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1.2019.001. CHEN Xi, QIAO Mingzhe. Progress of immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1.2019.001. [8] Stansfield JC, Rusay M, Shan R, et al. Toward signaling-driven biomarkers immune to normal tissue contamination[J]. Cancer Inform, 2016, 15: 15-21. doi:10.4137/CIN.S32468. [9] 王攀, 赵洪林, 任凡, 等. 表观遗传学在恶性肿瘤发生发展和治疗中的新进展[J]. 中国肺癌杂志,2020, 23(2):91-100. doi:10.3779/j.issn.1009-3419.2020.02.04. WANG Pan, ZHAO Honglin, REN Fan, et al. Research progress of epigenetics in pathogenesis and treatment of malignant tumors[J]. Chinese Journal of Lung Cancer, 2020.23(2):91-100. doi:10.3779/j.issn.1009-3419.2020.02.04. [10] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-W97. doi:10.1093/nar/gkw377. [11] Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. doi:10.1093/nar/gkw937. [12] Tang ZF, Li CW, Kang BX, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. doi:10.1093/nar/gkx247. [13] Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome[J]. Protein Sci, 2018, 27(1): 233-244. doi:10.1002/pro.3307. [14] Gao YR, Kim S, Lee YI, et al. Cellular stress-modulating drugs can potentially be identified by in silico screening with connectivity map(CMap)[J]. Int J Mol Sci, 2019, 20(22): E5601. doi:10.3390/ijms20225601. [15] Wang YL, Bryant SH, Cheng TJ, et al. PubChem BioAssay: 2017 update[J]. Nucleic Acids Res, 2017, 45(D1): D955-D963. doi:10.1093/nar/gkw1118. [16] 郭雪茹, 徐克. MicroRNAs在肿瘤相关成纤维细胞促进肿瘤发展进程中的作用[J]. 中国肿瘤生物治疗杂志, 2019, 26(11): 1181-1188. GUO Xueru, XU Ke. Roles of microRNAs in the tumor progression promoted by cancer-associated fibroblasts[J]. Chinese Journal of Cancer Biotherapy, 2019, 26(11): 1181-1188. [17] Fan L, Zhu QY, Liu L, et al. CXCL13 is androgen-responsive and involved in androgen induced prostate cancer cell migration and invasion[J]. Oncotarget, 2017, 8(32): 53244-53261. doi:10.18632/oncotarget.18387. [18] 朱大伟, 蒋敬庭. 趋化因子CXCL13及其受体CXCR5在肿瘤中的作用[J]. 临床检验杂志, 2018, 36(2): 127-129. doi:10.13602/j.cnki.jcls.2018.02.13. [19] Crotty S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50(5): 1132-1148. doi:10.1016/j.immuni.2019.04.011. [20] Kazanietz MG, Durando M, Cooke M. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond[J]. Front Endocrinol(Lausanne), 2019, 10: 471. doi:10.3389/fendo.2019.00471. [21] Wang GZ, Cheng X, Zhou B, et al. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution[J]. Elife, 2015, 4: e09419. doi:10.7554/eLife.09419. [22] Jung SN, Lim HS, Liu LH, et al. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals[J]. Sci Rep, 2018, 8(1): 2718. doi:10.1038/s41598-018-21216-0. [23] Wang YH, Jin YX, Bhandari A, et al. Upregulated LAMB3 increases proliferation and metastasis in thyroid cancer[J]. Onco Targets Ther, 2018, 11: 37-46. doi:10.2147/OTT.S149613. [24] Zhou QH, Deng CZ, Chen JP, et al. Elevated serum LAMC2 is associated with lymph node metastasis and predicts poor prognosis in penile squamous cell carcinoma[J]. Cancer Manag Res, 2018, 10: 2983-2995. doi:10.2147/CMAR.S171912. [25] Moon YW, Rao G, Kim JJ, et al. LAMC2 enhances the metastatic potential of lung adenocarcinoma[J]. Cell Death Differ, 2015, 22(8): 1341-1352. doi:10.1038/cdd.2014.228. [26] 钟姗, 王筠, 刘乃嘉, 等. 食管鳞癌中3个新miRNA的分子功能预测[J]. 深圳大学学报(理工版), 2019, 36(4): 347-353. doi:10.3724/SP.J.1249.2019.04347. ZHONG Shan, WANG Yun, LIU Naijia, et al. The prediction of molecular functions for three novel miRNAs in esophageal squamous cell carcinoma[J]. Journal of Shenzhen University(Science & Engineering), 2019, 36(4): 347-353. doi:10.3724/SP.J.1249.2019.04347. [27] 徐丽云. Drosha沉默对胃癌细胞迁移影响及其分子机制研究[D]. 重庆: 重庆医科大学, 2016. [28] Nguyen CT, Okamura T, Morita KI, et al. LAMC2 is a predictive marker for the malignant progression of leukoplakia[J]. J Oral Pathol Med, 2017, 46(3): 223-231. doi:10.1111/jop.12485. [29] 董熠, 李营歌, 姚颐, 等. 平足蛋白在肿瘤发生发展中的研究现状[J]. 肿瘤学杂志, 2019, 25(4): 345-348. doi:10.11735/j.issn.1671-170X.2019.04.B012. DONG Yi, LI Yingge, YAO Yi, et al. Research progress of PDPN in carcinogenesis and development of cancer[J]. Journal of Chinese Oncology, 2019, 25(4): 345-348. doi:10.11735/j.issn.1671-170X.2019.04.B012. [30] 宋波. microRNA-338通过靶向EphA2基因及调节Wnt/β-catenin信号通路抑制胃癌发展的机制研究[D]. 济南: 山东大学, 2019. [31] Xiong HG, Li H, Xiao Y, et al. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 278. doi:10.1186/s13046-019-1254-4. [32] Lin MS, Zhang Z, Gao MJ, et al. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression[J]. Cancer Manag Res, 2019, 11: 5353-5363. doi:10.2147/CMAR.S208233. [33] 张秀景. 口腔恶性肿瘤中基质金属蛋白酶-9的功能变化[J]. 安徽医药, 2017, 21(7): 1172-1175. doi:10.3969/j.issn.1009-6469.2017.07.002. ZHANG Xiujing. Roles of matrix metalloproteinase-9 in malignant cell carcinoma[J]. Anhui Medical and Pharmaceutical Journal, 2017, 21(7): 1172-1175. doi:10.3969/j.issn.1009-6469.2017.07.002. [34] Pavón MA, Arroyo-Solera I, Téllez-Gabriel M, et al. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients[J]. Oncotarget, 2015, 6(30): 29016-29033. doi:10.18632/oncotarget.5032. [35] 沈苗, 钟兴伟. SERPINE1基因在胃癌中的表达及临床意义[J]. 世界华人消化杂志, 2018, 26(31): 1818-1824. SHEN Miao, ZHONG Xingwei. Clinical significance of expression of SERPINE1 gene in gastric cancer[J]. World Chinese Journal of Digestology, 2018, 26(31): 1818-1824. [36] Pavón MA, Arroyo-Solera I, Céspedes MV, et al. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy[J]. Oncotarget, 2016, 7(35): 57351-57366. doi:10.18632/oncotarget.10344. [37] Zhang HT, Tian EB, Chen YL, et al. Proteomic analysis for finding serum pathogenic factors and potential biomarkers in multiple myeloma[J]. Chin Med J, 2015, 128(8): 1108-1113. doi:10.4103/0366-6999.155112. [38] Chokchaichamnankit D, Watcharatanyatip K, Subhasitanont P, et al. Urinary biomarkers for the diagnosis of cervical cancer by quantitative label-free mass spectrometry analysis[J]. Oncol Lett, 2019, 17(6): 5453-5468. doi:10.3892/ol.2019.10227. |
[1] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[2] | RUI Xiaoqing, LI Youjin. Molecular level detection of umbilical cord blood cells and pathogenesis of allergic diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 110-114. |
[3] | ZHAO Jincheng, SHI Ying, ZHANG Ying, JIA Zhanhong, MA Xin, ZHANG Jingqiu, WU Zaijun, WANG Yu. Expression and methylation patterns of CDH13 in human head and neck squamous carcinoma cells. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 60-63. |
[4] | ZHANG Mingde, ZHANG Zuping, YU Xuemin, WEI Yanhong, YUAN Ying. RASSF2A methylation in laryngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 64-67. |
[5] | L Mei1, DONG Pin2, SHE Cui-ping3, DU Cui-ping1, LI Yong1, XU Er-dong1. Differentially expressed genes in 3 cases of hypopharyngeal carcinoma and normal tissues by cDNA microarray [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(5): 5-. |
[6] | LIU Rui,SHI Wen-jie,LIU Ji-xiang . Differentially expressed genes in laryngeal squamous cell carcinoma and normal tissue by cDNA microarray [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 68-70 . |
|