Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (2): 72-78.doi: 10.6040/j.issn.1673-3770.1.2020.016
Previous Articles Next Articles
WANG Xuanqi,CHEN XunReview,WANG XiaoyingGuidance
CLC Number:
[1] Khalifa YM, Goldsmith J, Moshirfar M. Bilateral explantation of Visian Implantable Collamer Lenses secondary to bilateral acute angle closure resulting from a non-pupillary block mechanism[J]. J Refract Surg, 2010, 26(12): 991-994. doi:10.3928/1081597X-20100521-01. [2] Gonvers M, Bornet C, Othenin-Girard P. Implantable contact Lens for moderate to high myopia: relationship of vaulting to cataract formation[J]. J Cataract Refract Surg, 2003, 29(5): 918-924. doi:10.1016/s0886-3350(03)00065-8. [3] Cao XF, Wu WL, Wang Y, et al. Comparison over time of vault in Chinese eyes receiving implantable contact lenses with or without a central hole[J]. Am J Ophthalmol, 2016, 172: 111-117. doi:10.1016/j.ajo.2016.09.016. [4] Kamiya K, Shimizu K, Ando W, et al. Comparison of vault after implantation of posterior chamber phakic intraocular Lens with and without a central hole[J]. J Cataract Refract Surg, 2015, 41(1): 67-72. doi:10.1016/j.jcrs.2014.11.011. [5] Guber I, Bergin C, Perritaz S, et al. Correcting interdevice Bias of horizontal white-to-white and sulcus-to-sulcus measures used for implantable collamer Lens sizing[J]. Am J Ophthalmol, 2016, 161: 116-125.e1. doi:10.1016/j.ajo.2015.09.037. [6] Wang L, Auffarth GU. White-to-white corneal diameter measurements using the eyemetrics program of the Orbscan topography system[J]. Dev Ophthalmol, 2002, 34: 141-146. doi:10.1159/000060793. [7] Gao J, Liao RF, Li N. Ciliary sulcus diameters at different anterior chamber depths in highly myopic eyes[J]. J Cataract Refract Surg, 2013, 39(7): 1011-1016. doi:10.1016/j.jcrs.2013.01.040. [8] Kawamorita T, Uozato H, Kamiya K, et al. Relationship between ciliary sulcus diameter and anterior chamber diameter and corneal diameter[J]. J Cataract Refract Surg, 2010, 36(4): 617-624. doi:10.1016/j.jcrs.2009.11.017. [9] Biermann J, Bredow L, Boehringer D, et al. Evaluation of ciliary sulcus diameter using ultrasound biomicroscopy in emmetropic eyes and myopic eyes[J]. J Cataract Refract Surg, 2011, 37(9): 1686-1693. doi:10.1016/j.jcrs.2011.03.048. [10] Packer M. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer Lens[J]. Clin Ophthalmol, 2016, 10: 1059-1077. doi:10.2147/OPTH.S111620. [11] Baumeister M, Terzi E, Ekici Y, et al. Comparison of manual and automated methods to determine horizontal corneal diameter[J]. J Cataract Refract Surg, 2004, 30(2): 374-380. doi:10.1016/j.jcrs.2003.06.004. [12] Salouti R, Nowroozzadeh MH, Zamani M, et al. Comparison of Horizontal corneal diameter measurements using the Orbscan IIz and Pentacam HR systems[J]. Cornea, 2013, 32(11): 1460-1464. doi:10.1097/ICO.0b013e3182a40786. [13] Kohnen T, Thomala MC, Cichocki M, et al. Internal anterior chamber diameter using optical coherence tomography compared with white-to-white distances using automated measurements[J]. J Cataract Refract Surg, 2006, 32(11): 1809-1813. doi:10.1016/j.jcrs.2006.08.023. [14] Mori T, Yokoyama S, Kojima T, et al. Factors affecting rotation of a posterior chamber collagen copolymer toric phakic intraocular Lens[J]. J Cataract Refract Surg, 2012, 38(4): 568-573. doi:10.1016/j.jcrs.2011.11.028. [15] Zhang X, Chen X, Wang XY, et al. Analysis of intraocular positions of posterior implantable collamer Lens by full-scale ultrasound biomicroscopy[J]. BMC Ophthalmol, 2018, 18(1): 114. doi:10.1186/s12886-018-0783-5. [16] Li Z, Xu ZK, Wang YQ, et al. Implantable collamer Lens surgery in patients with primary Iris and/or ciliary body cysts[J]. BMC Ophthalmol, 2018, 18(1): 287. doi:10.1186/s12886-018-0935-7. [17] Gonzalez-Lopez F, Bilbao-Calabuig R, Mompean B, et al. Determining the potential role of crystalline Lens rise in vaulting in posterior chamber phakic collamer Lens surgery for correction of myopia[J]. J Refract Surg, 2019, 35(3): 177-183. doi:10.3928/1081597X-20190204-01. [18] Seo JH, Kim MK, Wee WR, et al. Effects of white-to-white diameter and anterior chamber depth on implantable collamer Lens vault and visual outcome[J]. J Refract Surg, 2009, 25(8): 730-738. doi:10.3928/1081597X-20090707-08. [19] Alfonso JF, Fernández-Vega L, Lisa C, et al. Central vault after phakic intraocular Lens implantation: correlation with anterior chamber depth, white-to-white distance, spherical equivalent, and patient age[J]. J Cataract Refract Surg, 2012, 38(1): 46-53. doi:10.1016/j.jcrs.2011.07.035. [20] Lee H, Kang DSY, Choi JY, et al. Analysis of pre-operative factors affecting range of optimal vaulting after implantation of 12.6-mm V4c implantable collamer Lens in myopic eyes[J]. BMC Ophthalmol, 2018, 18(1): 163. doi:10.1186/s12886-018-0835-x. [21] Choi JH, Lim DH, Nam SW, et al. Ten-year clinical outcomes after implantation of a posterior chamber phakic intraocular Lens for myopia[J]. J Cataract Refract Surg, 2019, 45(11): 1555-1561. doi:10.1016/j.jcrs.2019.06.015. [22] Schmidinger G, Lackner B, Pieh S, et al. Long-term changes in posterior chamber phakic intraocular collamer Lens vaulting in myopic patients[J]. Ophthalmology, 2010, 117(8): 1506-1511. doi:10.1016/j.ophtha.2009.12.013. [23] Guber I, Mouvet V, Bergin C, et al. Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic Lens implantation for myopia[J]. JAMA Ophthalmol, 2016, 134(5): 487-494. doi:10.1001/jamaophthalmol.2016.0078. [24] Atchison DA, Markwell EL, Kasthurirangan S, et al. Age-related changes in optical and biometric characteristics of emmetropic eyes[J]. J Vis, 2008, 8(4): 29.1-20. doi:10.1167/8.4.29. [25] Lee H, Kang SY, Seo KY, et al. Dynamic vaulting changes in V4c versus V4 posterior chamber phakic lenses under differing lighting conditions[J]. Am J Ophthalmol, 2014, 158(6): 1199-1204.e1. doi:10.1016/j.ajo.2014.08.020. [26] Petternel V, Köppl CM, Dejaco-Ruhswurm I, et al. Effect of accommodation and pupil size on the movement of a posterior chamber Lens in the phakic eye[J]. Ophthalmology, 2004, 111(2): 325-331. doi:10.1016/j.ophtha.2003.05.013. [27] Lee H, Kang DS, Ha BJ, et al. Effect of accommodation on vaulting and movement of posterior chamber phakic lenses in eyes with implantable collamer lenses[J]. Am J Ophthalmol, 2015, 160(4): 710-716.e1. doi:10.1016/j.ajo.2015.07.014. [28] Du CX, Wang JH, Wang XY, et al. Ultrasound biomicroscopy of anterior segment accommodative changes with posterior chamber phakic intraocular Lens in high myopia[J]. Ophthalmology, 2012, 119(1): 99-105. doi:10.1016/j.ophtha.2011.07.001. [29] Chen X, Miao HM, Naidu RK, et al. Comparison of early changes in and factors affecting vault following posterior chamber phakic Implantable Collamer Lens implantation without and with a central hole(ICL V4 and ICL V4c)[J]. BMC Ophthalmol, 2016, 16(1): 161. doi:10.1186/s12886-016-0336-8. [30] Lindland A, Heger H, Kugelberg M, et al. Vaulting of myopic and toric Implantable Collamer Lenses during accommodation measured with Visante optical coherence tomography[J]. Ophthalmology, 2010, 117(6): 1245-1250. doi:10.1016/j.ophtha.2009.10.033. [31] Garcia-De la Rosa G, Olivo-Payne A, Serna-Ojeda JC, et al. Anterior segment optical coherence tomography angle and vault analysis after toric and non-toric implantable collamer Lens V4c implantation in patients with high myopia[J]. Br J Ophthalmol, 2018, 102(4): 544-548. doi:10.1136/bjophthalmol-2017-310518. [32] Yan ZP, Miao HM, Zhao F, et al. Two-year outcomes of visian implantable collamer Lens with a central hole for correcting high myopia[J]. J Ophthalmol, 2018, 2018: 8678352. doi:10.1155/2018/8678352. [33] Fernández-Vigo JI, Macarro-Merino A, Fernández-Vigo C, et al. Impacts of implantable collamer Lens V4c placement on angle measurements made by optical coherence tomography: two-year follow-up[J]. Am J Ophthalmol, 2018, 186: 171-172. doi:10.1016/j.ajo.2017.10.034. [34] Dougherty PJ, Rivera RP, Schneider D, et al. Improving accuracy of phakic intraocular Lens sizing using high-frequency ultrasound biomicroscopy[J]. J Cataract Refract Surg, 2011, 37(1): 13-18. doi:10.1016/j.jcrs.2010.07.014. [35] Rayner SA, Bhikoo R, Gray T. Spherical implantable collamer lenses for myopia and hyperopia: 126 eyes with 1-year follow up[J]. Clin Experiment Ophthalmol, 2010, 38(1): 21-26. doi:10.1111/j.1442-9071.2010.02192.x. [36] Lisa C, Naveiras M, Alfonso-Bartolozzi B, et al. Posterior chamber collagen copolymer phakic intraocular Lens with a central hole to correct myopia: One-year follow-up[J]. J Cataract Refract Surg, 2015, 41(6): 1153-1159. doi:10.1016/j.jcrs.2014.10.030. [37] Rodríguez-Una I, Rodríguez-Calvo PP, Fernández-Vega Cueto L, et al. Intraocular pressure after implantation of a phakic collamer intraocular Lens with a central hole[J]. J Refract Surg, 2017, 33(4): 244-249. doi:10.3928/1081597X-20170110-01. [38] Alfonso JF, Fernández-Vega-Cueto L, Alfonso-Bartolozzi B, et al. Five-year follow-up of correction of myopia: posterior chamber phakic intraocular Lens with a central port design[J]. J Refract Surg, 2019, 35(3): 169-176. doi:10.3928/1081597X-20190118-01. [39] Kojima T, Kitazawa Y, Nakamura T, et al. Prospective randomized multicenter comparison of the clinical outcomes of V4c and V5 implantable collamer lenses: a contralateral eye study[J]. J Ophthalmol, 2018, 2018: 7623829. doi:10.1155/2018/7623829. [40] Matarazzo F, Day AC, Fernandez-Vega Cueto L, et al. Vertical implantable collamer Lens(ICL)rotation for the management of high vault due to Lens oversizing[J]. Int Ophthalmol, 2018, 38(6): 2689-2692. doi:10.1007/s10792-017-0757-2. [41] Lim DH, Lyu IJ, Choi SH, et al. Risk factors associated with night vision disturbances after phakic intraocular Lens implantation[J]. Am J Ophthalmol, 2014, 157(1): 135-141.e1. doi:10.1016/j.ajo.2013.09.004. [42] Kamiya K, Shimizu K, Saito A, et al. Comparison of optical quality and intraocular scattering after posterior chamber phakic intraocular Lens with and without a central hole(Hole ICL and Conventional ICL)implantation using the double-pass instrument[J]. PLoS One, 2013, 8(6): e66846. doi:10.1371/journal.pone.0066846. [43] Ferrer-Blasco T, García-Lázaro S, Belda-Salmerón L, et al. Intra-eye visual function comparison with and without a central hole contact Lens-based system: potential applications to ICL design[J]. J Refract Surg, 2013, 29(10): 702-707. doi:10.3928/1081597X-20130919-03. [44] Sanders DR, Vukich JA, Doney K, et al. U.S. Food and Drug Administration clinical trial of the Implantable Contact Lens for moderate to high myopia[J]. Ophthalmology, 2003, 110(2): 255-266. doi:10.1016/s0161-6420(02)01771-2. [45] Fujisawa K, Shimizu K, Uga S, et al. Changes in the crystalline Lens resulting from insertion of a phakic IOL(ICL)into the porcine eye[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2007, 245(1): 114-122. doi:10.1007/s00417-006-0338-y. [46] Sanders DR. Anterior subcapsular opacities and cataracts 5 years after surgery in the visian implantable collamer Lens FDA trial[J]. J Refract Surg, 2008, 24(6): 566-570. doi:10.3928/1081597X-20080601-04. [47] Shiratani T, Shimizu K, Fujisawa K, et al. Crystalline Lens changes in porcine eyes with implanted phakic IOL(ICL)with a central hole[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2008, 246(5):719-728. doi:10.1007/s00417-007-0759-2. [48] Kawamorita T, Uozato H, Shimizu K. Fluid dynamics simulation of aqueous humour in a posterior-chamber phakic intraocular Lens with a central perforation[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2012, 250(6): 935-939. doi:10.1007/s00417-011-1850-2. [49] Packer M. The Implantable Collamer Lens with a central port: review of the literature[J]. Clin Ophthalmol, 2018, 12: 2427-2438. doi:10.2147/OPTH.S188785. [50] Shimizu K, Misawa A, Suzuki Y. Toric intraocular lenses: correcting astigmatism while controlling Axis shift[J]. J Cataract Refract Surg, 1994, 20(5):523-526. doi:10.1016/s0886-3350(13)80232-5. [51] Lee H, Kang DSY, Choi JY, et al. Rotational Stability and Visual Outcomes of V4c Toric Phakic Intraocular Lenses[J]. J Refract Surg, 2018, 34(7):489-496. doi: 10.3928/1081597X-20180521-01. [52] Hyun J, Lim DH, Eo DR, et al. A comparison of visual outcome and rotational stability of two types of toric implantable collamer lenses(TICL): V4 versus V4c[J]. PLoS One, 2017, 12(8):e0183335. doi: 10.1371/journal.pone.0183335. eCollection 2017. [53] Sheng XL, Rong WN, Jia Q, et al. Outcomes and possible risk factors associated with Axis alignment and rotational stability after implantation of the Toric implantable collamer Lens for high myopic astigmatism[J]. Int J Ophthalmol, 2012, 5(4): 459-465. doi:10.3980/j.issn.2222-3959.2012.04.10. [54] Pérez-Vives C, Ferrer-Blasco T, Madrid-Costa D, et al Visual quality comparison of conventional and Hole-Visian implantable collamer lens at different degrees of decentering[J]. Br J Ophthalmol, 2014, 98(1):59-64. doi:10.1136/bjophthalmol-2013-303787. [55] Park MJ, Jeon HM, Lee KH, et al. Comparison of postoperative optical quality according to the degree of decentering of V4c implantable collamer lens[J]. Int J Ophthalmol, 2017, 10(4):619-623. doi:10.18240/ijo.2017.04.19. [56] Martínez-Plaza E, López-Miguel A, Fernández I, et al. Effect of central hole location in phakic intraocular lenses on visual function under progressive headlight glare sources[J]. J Cataract Refract Surg, 2019,45(11):1591-1596. doi: 10.1016/j.jcrs.2019.06.022. |
[1] | DAI ChengOverview,LI BinzhongGuidance. Advances in multifocal soft corneal contact lens research [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 100-105. |
[2] | FENG Yiyuan, YANG Jing, YANG Hongbin. Clinical analysis of 220 cases of deep neck space infection [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 51-57. |
[3] | ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71. |
[4] | PENG Jiao, ZHONG Dingjuan, CHEN Jiao, ZUO Jun, WANG Hua. The effect of the relationship between the diameter of the optical zone and the diameter of the dark pupil on the visual quality of patients with different degrees of myopia after SMILE [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 100-107. |
[5] | LI Ying. Importance of standardized methods in corneal refractive surgery and the prevention of complications [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 1-6. |
[6] | LI Bin, FANG Xuejun, WU De, HUANG Min. Agreement study of implantable collamer lens based on NK and KS formulas in the early stage after surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 33-41. |
[7] | ZHANG Ying, LEI Yulin, MA Zhixing, YANG Xinghua, ZHANG Jing, HOU Jie. Early clinical observation of corneal densitometry after SMILE combined with rapid corneal cross-linking [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 52-58. |
[8] | LIU Yi, YU Mingkun, SUN Wei, SHAO Zhen, HU Yuanyuan, BI Hongsheng. The effectiveness and safety of orthokeratology on controlling myopia of children: a meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 92-100. |
[9] | CIREN Qiongda, WU Yuan. A case of long-term ocular complications caused by toxic epidermal necrolysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 147-150. |
[10] | RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124. |
[11] | ZHAO Yaming, SHI Song. Three cases of diagnosis and treatment of cervical necrotizing fasciitis with a primary diagnosis of acute epiglottitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 12-16. |
[12] | YUE Pengcheng, DU Qiuxuan, KONG Ling, QIAO Zhentao. A controlled Study of the accommodative parameters of eyes with uncorrected myopic anisometropia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 76-80. |
[13] | LIU Ling,ZHANG Meixia. Drug therapy for myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 123-128. |
[14] | SUN Chuan, LIU Yaqun, HE Shuangba, ZHANG Qingxiang. Cryogenic plasma-assisted nasal resection of seventeen cases of anterior and middle skull base tumors [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 55-59. |
[15] | Pathologic myopia(PM)is a major cause of vision loss worldwide, particularly in Asian countries. Choroidal neovascularization(CNV)is a severe complication of PM, which can cause macular disorders, leading to central scotoma, metamorphopsia, visual field loss, and finally blindness if not treated. The advents of optical coherence topography(OCT), OCT angiography, and fundus fluorescein angiography are helpful in diagnosing CNV due to PM, which can show the position and size of CNV, whether active or passive. For the treatment, photodynamic and anti-vascular endothelial growth factor(anti-VEGF)therapies are widely applied. In recent years, administering the intravitreal anti-VEGF injection has become the first-line treatment for CNV secondary to PM. Many clinical studies have indicated that intravitreal anti-VEGF injections affect antagonizing neovascularization and reduce macular edema, thereby contributing to visual improvements and better long-term outcomes. This article provides an overview of the current diagnosis and treatment options for myopic CNV.. Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162. |
|