Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (3): 19-25.doi: 10.6040/j.issn.1673-3770.1.2020.025

Previous Articles     Next Articles

A review of autofluorescence imaging of the parathyroid gland

SONG Xicheng1, ZHENG Haitao2   

  1. Yantai Yuhuangding Hospital Affiliated to Qingdao University, 1. Department of Otorhinolaryngology & Head and Neck Surgery;
    2. Department of Thyroid Surgery, Yantai 264000, Shandong, China
  • Published:2020-06-29

Abstract: The temporary and permanent dysfunction caused by parathyroid injury are inevitable. The parathyroid contains a special fluorescent substance, although its mechanism is not clear. At present, two kinds of autofluorescence detection equipment(FLUOBEAM ® imaging system, PTeye fiber probe contact system)can be used for real-time localization of the parathyroid gland for intraoperative localization and protection. The major advantage of this technique is that is allows detection of the parathyroid in excised specimens. The ratios of autofluorescence intensities of the parathyroid and thyroid are 1.23 and 7.71, respectively. The proportion of autofluorescence parathyroid identification sensitivity was 76.3-98.0% and the accuracy was 90.5-99.0%. The parathyroid gland autofluorescence technique is non-invasive, less time-consuming, provides accurate real-time information, and does not use dye as a contrast agent.

Key words: Parathyroid glands, parathyroid protection, autofluorescence, progress, review

CLC Number: 

  • R739.91
[1] Thomas G, McWade MA, Paras C, et al. Developing a clinical prototype to guide surgeons for intraoperative label-free identification of parathyroid glands in real time[J]. Thyroid, 2018, 28(11): 1517-1531. doi:10.1089/thy.2017.0716.
[2] Christou N, Mathonnet M. Complications after total thyroidectomy[J]. J Visc Surg, 2013, 150(4): 249-256. doi:10.1016/j.jviscsurg.2013.04.003.
[3] Caron NR, Sturgeon C, Clark OH. Persistent and recurrent hyperparathyroidism[J]. Curr Treat Options Oncol, 2004, 5(4): 335-345. doi:10.1007/s11864-004-0024-4.
[4] McWade MA, Sanders ME, Broome JT, et al. Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection[J]. Surgery, 2016, 159(1): 193-202. doi:10.1016/j.surg.2015.06.047.
[5] Almquist M, Ivarsson K, Nordenström E, et al. Mortality in patients with permanent hypoparathyroidism after total thyroidectomy[J]. Br J Surg, 2018, 105(10): 1313-1318. doi:10.1002/bjs.10843.
[6] Kahramangil B, Dip F, Benmiloud F, et al. Detection of parathyroid autofluorescence using near-infrared imaging: a multicenter analysis of concordance between different surgeons[J]. Ann Surg Oncol, 2018, 25(4): 957-962. doi:10.1245/s10434-018-6364-2.
[7] Dudley NE. Methylene blue for rapid identification of the parathyroids[J]. Br Med J, 1971, 3(5776): 680-681. doi:10.1136/bmj.3.5776.680.
[8] Antakia R, Gayet P, Guillermet S, et al. Near infrared fluorescence imaging of rabbit thyroid and parathyroid glands[J]. J Surg Res, 2014, 192(2): 480-486. doi:10.1016/j.jss.2014.05.061.
[9] Kahramangil B, Berber E. The use of near-infrared fluorescence imaging in endocrine surgical procedures[J]. J Surg Oncol, 2017, 115(7): 848-855. doi:10.1002/jso.24583.
[10] Zaidi N, Bucak E, Okoh A, et al. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during surgery for primary hyperparathyroidism[J]. J Surg Oncol, 2016, 113(7): 771-774. doi:10.1002/jso.24240.
[11] van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue[J]. Head Neck, 2014, 36(6): 853-858. doi:10.1002/hed.23384.
[12] Das K, Stone N, Kendall C, et al. Raman spectroscopy of parathyroid tissue pathology[J]. Lasers Med Sci, 2006, 21(4): 192-197. doi:10.1007/s10103-006-0397-7.
[13] Paras C, Keller M, White L, et al. Near-infrared autofluorescence for the detection of parathyroid glands[J]. J Biomed Opt, 2011, 16(6): 067012. doi:10.1117/1.3583571.
[14] Solórzano CC, Thomas G, Baregamian N, et al. Detecting the near infrared autofluorescence of the human parathyroid[J]. Ann Surg, 2019: 2. doi:10.1097/sla.0000000000003700.
[15] Thomas G, Squires MH, Metcalf T, et al. Imaging or fiber probe-based approach? assessing different methods to detect near infrared autofluorescence for intraoperative parathyroid identification[J]. J Am Coll Surg, 2019, 229(6): 596-608.e3. doi:10.1016/j.jamcollsurg.2019.09.003.
[16] Ladurner R, Al Arabi N, Guendogar U, et al. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery[J]. Ann R Coll Surg Engl, 2018, 100(1): 33-36. doi:10.1308/rcsann.2017.0102.
[17] McWade MA, Paras C, White LM, et al. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging[J]. J Clin Endocrinol Metab, 2014, 99(12): 4574-4580. doi:10.1210/jc.2014-2503.
[18] Falco J, Dip F, Quadri P, et al. Cutting edge in thyroid surgery: autofluorescence of parathyroid glands[J]. J Am Coll Surg, 2016, 223(2): 374-380. doi:10.1016/j.jamcollsurg.2016.04.049.
[19] Serra C, Silveira L. Near-infrared irradiation of the thyroid area: effects on weight development and thyroid and parathyroid secretory patterns[J]. Lasers Med Sci, 2020, 35(1): 107-114. doi:10.1007/s10103-019-02800-w.
[20] Ladurner R, Sommerey S, Arabi NA, et al. Intraoperative near-infrared autofluorescence imaging of parathyroid glands[J]. Surg Endosc, 2017, 31(8): 3140-3145. doi:10.1007/s00464-016-5338-3.
[21] Kose E, Rudin AV, Kahramangil B, et al. Autofluorescence imaging of parathyroid glands: an assessment of potential indications[J]. Surgery, 2020, 167(1): 173-179. doi:10.1016/j.surg.2019.04.072.
[22] Kose E, Chomsky-Higgins KH, Kahramangil B, et al. Objective identification of parathyroid tissue using autofluorescence during thyroidectomy: a quantitative analysis[J]. J Am Coll Surg, 2018, 227(4): e119-e120. doi:10.1016/j.jamcollsurg.2018.08.323.
[23] De Leeuw F, Breuskin I, Abbaci M, et al. Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: a feasibility study[J]. World J Surg, 2016, 40(9): 2131-2138. doi:10.1007/s00268-016-3571-5.
[24] Kim SW, Song SH, Lee HS, et al. Intraoperative real-time localization of normal parathyroid glands with autofluorescence imaging[J]. J Clin Endocrinol Metab, 2016, 101(12): 4646-4652. doi:10.1210/jc.2016-2558.
[25] Kim SW, Lee HS, Ahn YC, et al. Near-infrared autofluorescence image-guided parathyroid gland mapping in thyroidectomy[J]. J Am Coll Surg, 2018, 226(2): 165-172. doi:10.1016/j.jamcollsurg.2017.10.015.
[26] Benmiloud F, Rebaudet S, Varoquaux A, et al. Impact of autofluorescence-based identification of parathyroids during total thyroidectomy on postoperative hypocalcemia: a before and after controlled study[J]. Surgery, 2018, 163(1): 23-30. doi:10.1016/j.surg.2017.06.022.
[27] Ladurner R, Lerchenberger M, Al Arabi N, et al. Parathyroid autofluorescence-how does it affect parathyroid and thyroid surgery? A 5 year experience[J]. Molecules, 2019, 24(14): E2560. doi:10.3390/molecules24142560.
[28] Liu JS, Wang XX, Wang R, et al. Near-infrared auto-fluorescence spectroscopy combining with Fisher's linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy[J]. BMC Surg, 2020, 20(1): 4. doi:10.1186/s12893-019-0670-x.
[29] Dip F, Falco J, Verna S, et al. Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy[J]. J Am Coll Surg, 2019, 228(5): 744-751. doi:10.1016/j.jamcollsurg.2018.12.044.
[30] Kahramangil B, Berber E. Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy[J]. Gland Surg, 2017, 6(6): 644-648. doi:10.21037/gs.2017.09.04.
[31] Lerchenberger M, Al Arabi N, Gallwas JKS, et al. Intraoperative near-infrared autofluorescence and indocyanine green imaging to identify parathyroid glands: a comparison[J]. Int J Endocrinol, 2019, 2019: 4687951. doi:10.1155/2019/4687951.
[32] Kose E, Kahramangil B, Aydin H, et al. Heterogeneous and low-intensity parathyroid autofluorescence: Patterns suggesting hyperfunction at parathyroid exploration[J]. Surgery, 2019, 165(2): 431-437. doi:10.1016/j.surg.2018.08.006.
[33] DiMarco A, Chotalia R, Bloxham R, et al. Autofluorescence in parathyroidectomy: signal intensity correlates with serum calcium and parathyroid hormone but routine clinical use is not justified[J]. World J Surg, 2019, 43(6): 1532-1537. doi:10.1007/s00268-019-04929-9.
[34] Squires MH, Jarvis R, Shirley LA, et al. Intraoperative parathyroid autofluorescence detection in patients with primary hyperparathyroidism[J]. Ann Surg Oncol, 2019, 26(4): 1142-1148. doi:10.1245/s10434-019-07161-w.
[35] Serra C, Silveira L, Canudo A, et al. Parathyroid identification by autofluorescence-preliminary report on five cases of surgery for primary hyperparathyroidism[J]. BMC Surg, 2019, 19(1): 120. doi:10.1186/s12893-019-0590-9.
[36] Wolf HW, Grumbeck B, Runkel N. Intraoperative verification of parathyroid glands in primary and secondary hyperparathyroidism using near-infrared autofluorescence(IOPA)[J]. Updates Surg, 2019, 71(3): 579-585. doi:10.1007/s13304-019-00652-1.
[37] Squires MH, Shirley LA, Shen CL, et al. Intraoperative autofluorescence parathyroid identification in patients with multiple endocrine neoplasia type 1[J]. JAMA Otolaryngol Head Neck Surg, 2019,145(10):897-902. doi:10.1001/jamaoto.2019.1987.
[38] Benmiloud F, Godiris-Petit G, Gras R, et al. Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: results of the PARAFLUO multicenter randomized clinical trial[J]. JAMA Surg, 2019,155(2):106-112. doi:10.1001/jamasurg.2019.4613.
[39] DiMarco A, Chotalia R, Bloxham R, et al. Does fluoroscopy prevent inadvertent parathyroidectomy in thyroid surgery?[J]. Ann R Coll Surg Engl, 2019, 101(7): 508-513. doi:10.1308/rcsann.2019.0065.
[40] Shinden Y, Nakajo A, Arima H, et al. Intraoperative identification of the parathyroid gland with a fluorescence detection system[J]. World J Surg, 2017, 41(6): 1506-1512. doi:10.1007/s00268-017-3903-0.
[41] McWade MA, Thomas G, Nguyen JQ, et al. Enhancing parathyroid gland visualization using a near infrared fluorescence-based overlay imaging system[J]. J Am Coll Surg, 2019, 228(5): 730-743. doi:10.1016/j.jamcollsurg.2019.01.017.
[42] Mannoh EA, Thomas G, Solórzano CC, et al. Intraoperative assessment of parathyroid viability using laser speckle contrast imaging[J]. Sci Rep, 2017, 7(1): 14798. doi:10.1038/s41598-017-14941-5.
[43] Mondal SB, Gao SK, Zhu N, et al. Optical see-through cancer vision goggles enable direct patient visualization and real-time fluorescence-guided oncologic surgery[J]. Ann Surg Oncol, 2017, 24(7): 1897-1903. doi:10.1245/s10434-017-5804-8.
[44] Mondal SB, Gao SK, Zhu N, et al. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping[J]. Sci Rep, 2015, 5: 12117. doi:10.1038/srep12117.
[1] WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance. Progress in diabetic retinopathy mechanisms and cellular models [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99.
[2] RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124.
[3] XIAO Shuifang, ZHANG Junbo. Further standardized promotion of the application of radiofrequency coblation in otorhinolaryngology, head and neck surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 1-8.
[4] XIAO Xili, NIE Yuxiao, CHEN Jie. Visual analysis of domestic studies on dry eye syndrome in the past ten years using Citespace [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 86-97.
[5] FAN Yiyan, ZHANG Xiaolin, LIU Xiuzhen, YIN Jingjing, YUAN Jin, WANG Yanfei, CHEN Jun. Expression and clinical significance of CPS1 in laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 72-76.
[6] XIANG Liulan, YE YuanhangOverview,JIANG Luyun, LIU YangGuidance. Elucidating the role and mechanism of Tim-3 in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 118-122.
[7] ObjectiveTo compare the effects of intra-arterial thrombolysis and traditional treatment in central retinal artery occlusion(CRAO). MethodsWe searched the Pubmed, Embase, Clinical.gov, CNKI, and Wan Fang databases for related studies that were published up to May , . We included clinical controls that compared intra-arterial thrombolysis and conventional treatment in CRAO. The random effect model and R software were used for data analysis. ResultsWe identified seven studies including CRAO patients. Meta-analysis results of two randomized controlled trials(RCTs)showed that there was no significant difference in visual acuity improvement between CRAO patients treated with arterial thrombolysis therapy and those with conventional therapy(RR: ., % confidence interval .-., P=.). Meta-analysis results of five cohort studies indicated that compared with conventional therapy, arterial thrombolysis therapy significantly improved visual acuity(RR: ., % confidence interval .-., P<.). The difference between thrombolysis therapy and conventional therapy may be caused by the different treatment time windows in patients. Concerning the adverse reactions after treatment, two RCTs and five cohort studies showed that the adverse reactions in the thrombolysis group are significantly higher than those in the conventional treatment group. ConclusionAlthough intra-arterial thrombolysis therapy has therapeutic potential in CRAO patients, there is still insufficient clinical evidence to prove its effectiveness and safety. Further studies with a large sample and high quality RCTs are required.. Intra-arterial thrombolysis for central retinal artery occlusion: a Meta-analysisCHEN Xi, LI Shanshan, ZHAO Lu, YOU Ran, WANG Yanling Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 28-34.
[8] LIU Lin, ZHENG Hua, CHEN Shaolin, DUAN Xuanchu. Neuroprotective effects and safety of stem cell transplantation in rats with experimental glaucoma: a systematic review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 138-144.
[9] LI Shaonan, YU Dan, WEN Lianji. Research progress on the relationship between obstructive sleep apnea syndrome and diseases of the respiratory and circulatory systems [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 140-144.
[10] ZHU Mingjuan, XING Kai, KANG Zefeng, LIU Jian. Diagnosis and treatment of thyroid-associated ophthalmopathy [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 110-113.
[11] CHEN Hong, CAO Huiling, DOU Xin, GAO Xia. Small cell neuroendocrine carcinoma in the right nasal cavity: a report of one case and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 89-92.
[12] LIN Xing, LIN Zongtong, SHEN Ling.. Outcomes of sinus balloon catheter dilation in treatment of pediatric chronic rhinosinusitis: a systematic review and meta-analysis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(6): 79-86.
[13] PAN Yongjie, SUN Guochen, ZANG Chuanshan. Granular cell tumor in the larynx: a report of four cases and a literature review. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 104-106.
[14] WEI Chao, ZHANG Han. Multifocal intraocular lens: progress in clinical application. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 29-35.
[15] XIE Shaobing, ZHANG Yanni, XU Zhenhang, ZHANG Jianhui, WU Xuewen, SUN Hong. A systematic review of surgical timing of traumatic facial paralysis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Bin,WANGHui-ge . Functional endoscopic sinus surgery, FESS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 481 -487 .
[2] GONG Lei,SUN Jie,XUE Zi-chao,LI Jing-hua,XUE Wei-guo . DNA analysis of the cell cycle in sino-nasal neoplasm[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 193 -195 .
[3] CHEN Wen-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 472 -472 .
[4] LUAN Jiangang,LIANG Chuanyu,WEN Yanjun,LI Jiong . Construction of RNAi expressing plasmid vector of pSIRENshuttle for EGFR gene silencing[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 4 -8 .
[5] MA Jing, ZHONG Cui-ping . Surgical method for nasopharyngeal fibroangioma encroaching on fossa pterygopalatina: with a report of 5 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 30 -32 .
[6] LIU Qiang-he,LUO Xiang-lin,GENG Wan-ping,CHEN Chen,LEI Xun,LIU Fang-xian,DENG Ming . Age-related spiral ganglion neuron damages and hearing loss in senescence accelerated mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 215 -217 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 223 -226 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 246 -247 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 250 -252 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 260 -262 .