Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (5): 93-99.doi: 10.6040/j.issn.1673-3770.0.2021.203

Previous Articles    

Progress in diabetic retinopathy mechanisms and cellular models

WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance   

  1. Department of Ophthalmology, Henan Provincial People's Hospital/Henan Eye Hospital/Henan Eye Institute, Zhengzhou 450003, Henan, China
  • Published:2022-09-20

Abstract: Diabetic retinopathy is the leading cause of poor vision and blindness in adults. A reasonable model for diabetic retinopathy can not only simulate its pathogenic mechanism, but also reduce economic investment. Therefore, screening and constructing suitable cell models is the core of research. In this paper, the mechanisms of inflammatory response, apoptosis, vascular dysfunction, and neurovascular unit dysfunction in diabetic retinopathy were discussed. Moreover, several models of endothelial cells, pericytes, retinal pigment epithelial cells, and glial cells were summarized to provide a useful reference for further studies on the mechanism of diabetic retinopathy and the development of relevant drugs.

Key words: Diabetic retinopathy, Vitro model, Construct, Mechanism, Progress

CLC Number: 

  • R774
[1] Zhao K, Liu J, Dong G, et al. Preliminary research on the effects and mechanisms of umbilical cord derived mesenchymal stem cells in streptozotocin induced diabetic retinopathy[J]. Int J Mol Med, 2020, 46(2): 849-858. doi:10.3892/ijmm.2020.4623.
[2] Xiao F, Li L, Fu JS, et al. Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs[J]. Biosci Rep, 2020, 40(7): BSR20194370. doi:10.1042/BSR20194370.
[3] 刘志高, 王淑雅, 韩旭光, 等. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021,35(1): 99-103. doi: 10.6040/j.issn.1673-3770.0.2020.250. LIU Zhigao, WANG Shuya, HAN Xuguang, et al. Preoperative timing and the effect of intravitreal aflibercept injection for proliferative diabetic retinopathy patients[J]. J Otolaryngol Ophthalmol Shandong Univ, 2021, 35(1): 99-103. doi: 10.6040/j.issn.1673-3770.0.2020.250.
[4] Fehér J, Taurone S, Spoletini M, et al. Ultrastructure of neurovascular changes in human diabetic retinopathy[J]. Int J Immunopathol Pharmacol, 2018, 31: 394632017748841. doi:10.1177/0394632017748841.
[5] Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy(PROTEUS study)[J]. Ophthalmology, 2018, 125(5): 691-700. doi:10.1016/j.ophtha.2017.12.008.
[6] Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077. doi:10.3389/fimmu.2020.564077.
[7] McKinsey GL, Lizama CO, Keown-Lang AE, et al. A new genetic strategy for targeting microglia in development and disease[J]. Elife, 2020, 9: e54590. doi:10.7554/eLife.54590.
[8] Abe N, Choudhury ME, Watanabe M, et al. Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: a study using a hypnotic bromovalerylurea[J]. Glia, 2018, 66(10): 2158-2173. doi:10.1002/glia.23469.
[9] Greter M, Lelios I, Croxford AL. Microglia versus myeloid cell nomenclature during brain inflammation[J]. Front Immunol, 2015, 6: 249. doi:10.3389/fimmu.2015.00249.
[10] Calado SM, Alves LS, Simão S, et al. GLUT1 activity contributes to the impairment of PEDF secretion by the RPE[J]. Mol Vis, 2016, 22: 761-770.
[11] Kim DI, Park MJ, Choi JH, et al. Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis[J]. Int J Biochem Cell Biol, 2015, 59: 41-51. doi:10.1016/j.biocel.2014.11.018.
[12] Su XJ, Sorenson CM, Sheibani N. Isolation and characterization of murine retinal endothelial cells[J]. Mol Vis, 2003, 9: 171-178. doi: 10.1002/mrd.10265.
[13] Bhattacharya S, Khan MM, Ghosh C, et al. The role of Dermcidin isoform-2 in the occurrence and severity of Diabetes[J]. Sci Rep, 2017, 7(1): 8252. doi:10.1038/s41598-017-07958-3.
[14] Song Y, Tian X, Wang XH, et al. Vascular protection of salicin on IL-1β-induced endothelial inflammatory response and damages in retinal endothelial cells[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1995-2002. doi:10.1080/21691401.2019.1608220.
[15] Gogg S, Smith U, Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1[J]. Diabetes, 2009, 58(10): 2238-2245. doi:10.2337/db08-0961.
[16] Roberts AC, Gohil J, Hudson L, et al. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?[J]. J Diabetes Res, 2015, 2015: 409432. doi:10.1155/2015/409432.
[17] Liu JT, Chen SL, Biswas S, et al. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs[J]. Physiol Rep, 2020, 8(3): e14331. doi:10.14814/phy2.14331.
[18] Boscaro C, Trenti A, Baggio C, et al. Sex differences in the pro-angiogenic response of human endothelial cells: focus on PFKFB3 and FAK activation[J]. Front Pharmacol, 2020, 11: 587221. doi:10.3389/fphar.2020.587221.
[19] Midena E, Micera A, Frizziero L, et al. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema[J]. Sci Rep, 2019, 9(1): 10034. doi:10.1038/s41598-019-46515-y.
[20] Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J]. Antioxidants(Basel), 2020, 9(12): E1244. doi:10.3390/antiox9121244.
[21] Tu YY, Song E, Wang ZZ, et al. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway[J]. Biomedecine Pharmacother, 2021, 137: 111274. doi:10.1016/j.biopha.2021.111274.
[22] Capozzi ME, Giblin MJ, Penn JS. Palmitic acid induces Müller cell inflammation that is potentiated by Co-treatment with glucose[J]. Sci Rep, 2018, 8(1): 5459. doi:10.1038/s41598-018-23601-1.
[23] Guo YW, Hong WM, Wang XM, et al. MicroRNAs in microglia: how do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma?[J]. Front Mol Neurosci, 2019, 12: 125. doi:10.3389/fnmol.2019.00125.
[24] 易秋雪. 外源性EPO通过调节小胶质细胞保护糖尿病视网膜病变血-视网膜内屏障[D]. 上海: 上海交通大学, 2019.
[25] Mesquida M, Drawnel F, Fauser S. The role of inflammation in diabetic eye disease[J]. Semin Immunopathol, 2019, 41(4): 427-445. doi:10.1007/s00281-019-00750-7.
[26] Shao K, Xi L, Cang Z, et al. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways[J]. J Cell Physiol, 2020, 235(12): 9361-9369. doi:10.1002/jcp.29740.
[27] Hammer SS, Beli E, Kady N, et al. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor[J]. EBioMedicine, 2017, 22: 181-190. doi:10.1016/j.ebiom.2017.07.008.
[28] Yumnamcha T, Devi TS, Singh LP. Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells: implications of retinal neurodegenerative diseases[J]. Front Neurosci, 2019, 13: 1065. doi:10.3389/fnins.2019.01065.
[29] Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function[J]. Vis Neurosci, 2020, 37: E008. doi:10.1017/s0952523820000097.
[30] Gao M, Liu HY, Xiao YS, et al. xCT regulates redox homeostasis and promotes photoreceptor survival after retinal detachment[J]. Free Radic Biol Med, 2020, 158: 32-43. doi:10.1016/j.freeradbiomed.2020.06.023.
[31] Lai TT, Yang CM, Yang CH. Astaxanthin protects retinal photoreceptor cells against high glucose-induced oxidative stress by induction of antioxidant enzymes via the PI3K/Akt/Nrf2 pathway[J]. Antioxidants(Basel), 2020, 9(8): E729. doi:10.3390/antiox9080729.
[32] Lv J, Bao SY, Liu TH, et al. Sulforaphane delays diabetes-induced retinal photoreceptor cell degeneration[J]. Cell Tissue Res, 2020, 382(3): 477-486. doi:10.1007/s00441-020-03267-w.
[33] Leal EC, Aveleira CA, Castilho AF, et al. High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway[J]. Exp Eye Res, 2009, 88(5): 983-991. doi:10.1016/j.exer.2008.12.010.
[34] Cai X, McGinnis JF. Diabetic retinopathy: animal models, therapies, and perspectives[J]. J Diabetes Res, 2016, 2016: 3789217. doi:10.1155/2016/3789217.
[35] Suarez S, McCollum GW, Jayagopal A, et al. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1[J]. J Biol Chem, 2015, 290(47): 28311-28320. doi:10.1074/jbc.m115.682385.
[36] Shi H, Koronyo Y, Fuchs DT, et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease[J]. Acta Neuropathol Commun, 2020, 8(1): 202. doi:10.1186/s40478-020-01076-4.
[37] Fu DX, Yu JY, Connell AR, et al. Beneficial effects of berberine on oxidized LDL-induced cytotoxicity to human retinal Müller cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3369-3379. doi:10.1167/iovs.16-19291.
[38] 李蓉, 姚杨, 杜军辉, 等. 自噬在高糖条件下视网膜色素上皮细胞表达血管内皮生长因子促进RF/6A细胞血管生成中的作用[J]. 眼科新进展, 2019,39(8): 714-718. doi:10.13389/j.cnki.rao.2019.0163. LI Rong, YAO Yang, DU Junhui, et al. Autophagy promotes angiogenesis of RF/6A cells following upregulating the expression of vascular endothelial growth factor in retinal pigment epithelial cells under high glucose conditions[J]. Recent Adv Ophthalmol, 2019, 39(8): 714-718. doi:10.13389/j.cnki.rao.2019.0163.
[39] Hu J, Li T, Du X, et al. G protein-coupled receptor 91 signaling in diabetic retinopathy and hypoxic retinal diseases[J]. Vision Res, 2017, 139: 59-64. doi:10.1016/j.visres.2017.05.001.
[40] Chen M, Liu B, Ma J, et al. Protective effect of mitochondria-targeted peptide MTP-131 against oxidative stress-induced apoptosis in RGC-5 cells[J]. Mol Med Rep, 2017, 15(4): 2179-2185. doi:10.3892/mmr.2017.6271.
[41] López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891. doi:10.3390/antiox9090891.
[42] Shosha E, Xu ZM, Narayanan S, et al. Mechanisms of diabetes-induced endothelial cell senescence: role of arginase 1[J]. Int J Mol Sci, 2018, 19(4): 1215. doi:10.3390/ijms19041215.
[43] Kady N, Yan Y, Salazar T, et al. Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes[J]. J Clin Lipidol, 2017, 11(3): 694-703. doi:10.1016/j.jacl.2017.03.007.
[44] 李红梅, 雷霍, 杨晓春, 等. 天麻素对高糖培养的小胶质细胞和视网膜神经节细胞相互作用的影响[J]. 昆明理工大学学报(自然科学版), 2015, 40(6): 96-102. doi:10.16112/j.cnki.53-1223/n.2015.06.016. LI Hongmei, LEI Huo, YANG Xiaochun, et al. Effect of gastrodin on interactions between microglia and retinal ganglion cells cultured by high glucose[J]. J Kunming Univ Sci Technol Nat Sci Ed, 2015, 40(6): 96-102. doi:10.16112/j.cnki.53-1223/n.2015.06.016.
[45] Durham JT, Dulmovits BM, Cronk SM, et al. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy?[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3441-3459. doi:10.1167/iovs.14-13945.
[46] 廖宇洁, 于晓彦, 金轶平, 等. 体外共培养模式下小胶质细胞影响内皮细胞紧密连接[J]. 海南医学, 2019, 30(5): 548-551. doi: 10.3969/j.issn.1003-6350.2019.05.002. LIAO Yujie, YU Xiaoyan, JIN Yiping, et al. Effect of microglia on the expression of tight junction in human umbilical vein endothelial cells by co-culture in vitro[J]. Hainan Med J, 2019, 30(5): 548-551. doi: 10.3969/j.issn.1003-6350.2019.05.002.
[47] 张晓梅, 王彬杰, 王巍, 等. Transwell小室共培养条件下缺氧时视网膜色素上皮细胞对内皮细胞增殖的影响[J]. 哈尔滨医科大学学报, 2011, 45(4): 312-315. doi: 10.3969/j.issn.1000-1905.2011.04.005. ZHANG Xiaomei, WANG Binjie, WANG Wei, et al. Effects of retinal pigment epithelium cells on proliferation of endothelial cells under hypoxia in a co-culture system[J]. J Harbin Med Univ, 2011, 45(4): 312-315. doi: 10.3969/j.issn.1000-1905.2011.04.005.
[48] 袁晨, 张梅, 谢学军. 血-视网膜内屏障体外模型构建研究进展[J]. 国际眼科杂志, 2021,21(6): 991-995. doi: 10.3980/j.issn.1672-5123.2021.6.10. YUAN Chen, ZHANG Mei, XIE Xuejun. Progress in the construction of inner blood retinal barrier model in vitro[J]. Int Eye Sci, 2021, 21(6): 991-995. doi: 10.3980/j.issn.1672-5123.2021.6.10.
[49] 李红, 樊映川. 视网膜神经血管相互作用机制及其在糖尿病视网膜病变中的病理改变的研究进展[J]. 实用医院临床杂志, 2015, 12(3): 148-150. doi: 10.3969/j.issn.1672-6170.2015.03.057. LI Hong, FAN Yingchuan. Neurovascular interactions in the retina: mechanism and the advances of pathological changes of diabetic retinopathy[J]. Pract J Clin Med, 2015, 12(3): 148-150. doi: 10.3969/j.issn.1672-6170.2015.03.057.
[50] Garhöfer G, Chua J, Tan BY, et al. Retinal neurovascular coupling in diabetes[J]. J Clin Med, 2020, 9(9): E2829. doi:10.3390/jcm9092829.
[51] Shahulhameed S, Swain S, Jana S, et al. A robust model system for retinal hypoxia: live imaging of calcium dynamics and gene expression studies in primary human mixed retinal culture[J]. Front Neurosci, 2019, 13: 1445. doi:10.3389/fnins.2019.01445.
[1] ZHAO Ying, ZHANG ShanOverview,XU Jiajun, ZHAO JingruGuidance. Research progress on the protective mechanism of heat shock protein 72 in glaucoma retinal ganglion cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 83-87.
[2] ZHANG Lijun, XU Ran, LUO Jifang, LIU Guoqi, HE Qian, LI Wei, JIANG Zhenhua. Factors affecting flap neurosis and other postoperative flap-related complications after free-flap reconstruction of head and neck tumors [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 86-90.
[3] WANG Lu, XIE Hui, LU Meidi, DENG Xinxing, LI Qingyun. Based on network pharmacology and molecular docking to explore the mechanism of “Chuanxiong-Baizhi” medicine in the treatment of sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 154-164.
[4] WANG Hui, WANG Jun, SUN Yi, YU Tengfei, ZHU Yuguang, ZHU Yan. Effect of intravitreal injection of HGF-MSCs on the expression of HGF in retina tissue of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 72-77.
[5] XU FeifeiOverview,WU HaoGuidance. The pathomechanism and treatment progress of trigeminal neuralgia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 115-122.
[6] WU ZebinOverview,QIU QianhuiGuidance. Endoscopic surgery for skull base lesions in pediatric patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 112-117.
[7] LIU Zhigao, WANG Shuya, HAN Xuguang, WANG Yu, LI Zhiwei, MA Aihua, ZHAO Bojun. Preoperative timing and the effect of intravitreal aflibercept injection for proliferative diabetic retinopathy patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 99-103.
[8] FAN Yiyan, ZHANG Xiaolin, LIU Xiuzhen, YIN Jingjing, YUAN Jin, WANG Yanfei, CHEN Jun. Expression and clinical significance of CPS1 in laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 72-76.
[9] Vestibular rehabilitation training is important for treating vestibular diseases and improving vertigo symptoms. However, the large number of patients, the lack of venues and rehabilitation specialists, and medical expenses have limited its application at all levels in hospitals. With the development of smartphones and the mobile internet, home-based rehabilitation and remote guidance have become possible. Therefore, we developed a remote vestibular rehabilitation training guidance platform to be accessed with smartphones and the mobile internet. The platform design is based on the Browser/Server mode structure; it has IOS and Android versions and supports wireless access smartphone terminals. The platform facilitates a more convenient, smooth, and effective remote guidance for vestibular rehabilitation function exercises, curative effect evaluations, and follow-up; this improves efficiency and compliance as well as reduces the technical barriers, site restrictions, and labor costs of vestibular rehabilitation. This paper introduces the functional design, related technology realization, and the operational effect of the platform.. Development and application of a vestibular rehabilitation training guidance platform [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 78-81.
[10] To investigate the swallowing function recovery on 23 cases of supraglottic laryngeal carcinoma postoperation. MethodsFrom 2016 to 2019, a retrospective swallowing function analysis was performed on 23 cases of supraglottic laryngeal carcinoma. All of the patients underwent horizontal hemilaryngectomy and reconstruction with tongue flap. The M.D. Anderson Dysphasia Inventory(MDADI)was used to evaluate the swallowing function from emotional dimension, social function dimension, and physiological dimension before and after operation. Results2 patients died during follow-up period.1 case lost follow-up. 20 patients recovered to normal diet. The overall swallowing median score was 90.00[80.00,100.00], and the postoperative score median was 80.00[80.00,80.00](P=0.359).The median score of emotion dimension was 91.67[77.50,93.33], 80.00[80.00,83.33](P=0.065)after operation. The median score of social function was 90.00[80.00,96.00]before surgery, and 84.00[80.00,92.00](P=0.587)after surgery. Physiological function median score was 83.75[76.25,89.38], 80.00[75.00,84.38](P=0.018)after surgery. ConclusionTongue flap can improve the swallowing function and the quality of patient life after the horizontal hemilaryngectomy.. The swallowing function recovery study on tongue flap after horizontal hemilaryngectomy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 127-131.
[11] Rhinogenic headache is caused by rhinosinusitis or abnormal nasal anatomy. Currently, there are clear classifications and pain grading standards to diagnose the same. Further, its mechanism of action is now understood to involve trigeminal nerve stimulation and sensory neuropeptide substance P. Functional endoscopic surgery(FESS)is prioritized as a treatment modality. During surgery, it is imperative to restore the normal anatomy of the nasal cavity. Several clinical studies have reported that FESS was significantly effective in treating rhinogenic headache, with an overall effective rate of 90% and cure rate of 78%. Additionally, one report indicates that postoperative endoscopic examination and dressing change can effectively reduce the occurrence of complications and ensure safety of the treatment.. Dynamic analysis of rhinogenic headacheZHOU Fangming1, XIE Yan2, LIU Yang2 Overview JIANG Luyun2Guidance 1. Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China 2. Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 130-133.
[12] SONG Xicheng, ZHENG Haitao. A review of autofluorescence imaging of the parathyroid gland [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 19-25.
[13] QING Xiaoyan, XU YiquanOverview, LI ChaoGuidance. Advances in molecular mechanisms of anaplastic thyroid cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 26-31.
[14] DENG Di, LIU Jun, LI Linke, WANG Ji, LIU Jifeng, LV Dan, WANG Haiyang, GAN Weigang, WANG Jun, LI Bo, CHEN Fei. Two-stage reconstructive strategy using a flap for non-circumferential tracheal defects [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 52-57.
[15] SU Faren, LIU Yuhong, BO Lin, LIU Xingang. A negative pressure drainage device for dermal dilatation of microtia in the second phase of auricular reconstruction surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 125-128.
Full text



No Suggested Reading articles found!