Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 144-149.doi: 10.6040/j.issn.1673-3770.0.2022.042

• Review • Previous Articles     Next Articles

Application of optical tomography angiography and artificial intelligence in choroidal neovascularization secondary to pathologic myopia

WU Lili, QU Yi   

  1. Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Online:2024-03-20 Published:2024-03-29

Abstract: In recent years, the incidence of pathological myopia (PM) has increased. PM is a global eyeblinding problem and a heavy social burden. Choroidal neovascularization (CNV) is a severe complication of PM that can cause macular disorders. This may lead to central scotoma, metamorphopsia, visual field loss, and eventually blindness if left treated. Optical coherence tomography angiography (OCTA) provides an automatic and accurate visualization of the layers of the retina and choroid, which allows a qualitative and quantitative description of the microvascular areas of the retina and choroid. OCTA can be used to detect the pathogenesis of high myopia, at the microvascular level of the retina. OCTA helps diagnose CNV secondary to PM due to its ability to show the position and size of the CNV. As management, photodynamic and antivascular endothelial growth factor therapies have been used. OCTA can be used to evaluate the therapeutic effect of PMCNV. This article provides an overview of the current research options on the diagnosis and treatment of CNV and discusses the problems and prospects when they are combined with artificial intelligence for choroidal imaging, to provide reference for clinical work.

Key words: Pathological myopia, Choroidal neovascularization, Optical coherence tomography angiography, Artificial intelligence

CLC Number: 

  • R774.1
[1] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006
[2] Fricke TR, Jong M, Naidoo KS, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling[J]. Br J Ophthalmol, 2018, 102(7): 855-862. doi:10.1136/bjophthalmol-2017-311266
[3] 刘益帆, 贾智艳, 刘平. 青少年近视危险因素综述[J]. 国际眼科杂志, 2016, 16(7): 1276-1278. doi:10.3980/j.issn.1672-5123.2016.7.17 LIU Yifan, JIA Zhiyan, LIU Ping. Review of juvenile myopia risk factors[J]. International Eye Science, 2016, 16(7): 1276-1278. doi:10.3980/j.issn.1672-5123.2016.7.17
[4] Wong TY, Ferreira A, Hughes R, et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review[J]. Am J Ophthalmol, 2014, 157(1): 9-25.e12. doi:10.1016/j.ajo.2013.08.010
[5] Saw SM, Hong CY, Chia KS, et al. Nearwork and myopia in young children[J]. Lancet, 2001, 357(9253): 390. doi:10.1016/S0140-6736(05)71520-8
[6] Saw SM, Chua WH, Wu HM, et al. Myopia: gene-environment interaction[J]. Ann Acad Med Singap, 2000, 29(3): 290-297
[7] Fan Q, Barathi VA, Cheng CY, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia[J]. PLoS Genet, 2012, 8(6): e1002753. doi:10.1371/journal.pgen.1002753
[8] Pan CW, Dirani M, Cheng CY, et al. The age-specific prevalence of myopia in Asia: a meta-analysis[J]. Optom Vis Sci, 2015, 92(3): 258-266. doi:10.1097/OPX.0000000000000516
[9] Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883.e7. doi:10.1016/j.ajo.2015.01.022
[10] Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. doi:10.1016/j.preteyeres.2015.12.001
[11] Anand S, Fan VY, Zhang JH, et al. China's human resources for health: quantity, quality, and distribution[J]. Lancet, 2008, 372(9651): 1774-1781. doi:10.1016/S0140-6736(08)61363-X
[12] Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system(ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. doi:10.1016/j.preteyeres.2018.10.005
[13] Cheung CMG, Ohno-Matsui K, Wong TY, et al. Influence of myopic macular degeneration severity on treatment outcomes with intravitreal aflibercept in the MYRROR study[J]. Acta Ophthalmol, 2019, 97(5): e729-e735. doi:10.1111/aos.14035
[14] Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia[J]. Prog Retin Eye Res, 2018, 63: 92-106. doi:10.1016/j.preteyeres.2017.10.005
[15] Leveziel N, Caillaux V, Bastuji-Garin S, et al. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization[J]. Am J Ophthalmol, 2013, 155(5): 913-919. doi:10.1016/j.ajo.2012.11.021
[16] Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. doi:10.1016/j.preteyeres.2015.12.001
[17] 丁雯芝, 邹俊. 病理性近视脉络膜新生血管发病机制的研究进展[J]. 眼科新进展, 2014, 34(10): 987-989. doi:10.13389/j.cnki.rao.2014.0274 DING Wenzhi, ZOU Jun. Research advances in pathogenesis of choroidal neovascularization of pathologic myopia[J]. Recent Advances in Ophthalmology, 2014, 34(10): 987-989. doi:10.13389/j.cnki.rao.2014.0274
[18] Kojima A, Ohno-Matsui K, Teramukai S, et al. Estimation of visual outcome without treatment in patients with subfoveal choroidal neovascularization in pathologic myopia[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2006, 244(11): 1474-1479. doi:10.1007/s00417-006-0324-4
[19] Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up[J]. Ophthalmology, 2003, 110(7): 1297-1305. doi:10.1016/S0161-6420(03)00461-5
[20] Miller DG, Singerman LJ. Natural history of choroidal neovascularization in high myopia[J]. Curr Opin Ophthalmol, 2001, 12(3): 222-224. doi:10.1097/00055735-200106000-00014
[21] Yannuzzi LA, Rohrer KT, Tindel LJ, et al. Fluorescein angiography complication survey[J]. Ophthalmology, 1986, 93(5): 611-617. doi:10.1016/s0161-6420(86)33697-2
[22] Kwiterovich KA, Maguire MG, Murphy RP, et al. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study[J]. Ophthalmology, 1991, 98(7): 1139-1142. doi:10.1016/s0161-6420(91)32165-1
[23] Borrelli E, Sarraf D, Freund KB, et al. OCT angiography and evaluation of the choroid and choroidal vascular disorders[J]. Prog Retin Eye Res, 2018, 67: 30-55. doi:10.1016/j.preteyeres.2018.07.002
[24] Cohen SY, Miere A, Nghiem-Buffet S, et al. Clinical applications of optical coherence tomography angiography: what we have learnt in the first 3 years[J]. Eur J Ophthalmol, 2018, 28(5): 491-502. doi:10.1177/1120672117753704
[25] McCarthy J, Minsky M, Rochester N, et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Mag, 2006, 27: 12-14. doi:10.1609/aimag.v27i4.1904
[26] Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation[J]. Chest, 2010, 137(2): 263-272. doi:10.1378/chest.09-1584
[27] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. doi:10.1001/jama.2016.17216
[28] Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26(6): 892-899. doi:10.1038/s41591-020-0867-7
[29] Li ZX, He YF, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206. doi:10.1016/j.ophtha.2018.01.023
[30] Garcia GP, Lavieri MS, Andrews C, et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension[J]. JAMA Ophthalmol, 2019, 137(12): 1416-1423. doi:10.1001/jamaophthalmol.2019.4190
[31] Sayanagi K, Hara C, Fukushima Y, et al. Flow pattern and perforating vessels in three different phases of myopic choroidal neovascularization seen by swept-source optical coherence tomography angiography[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(9): 2615-2624. doi:10.1007/s00417-021-05134-y
[32] Li SS, Sun LM, Zhao XJ, et al. Assessing the activity of myopic choroidal neovascularization: comparison between optical coherence tomography angiography and dye angiography[J]. Retina, 2020, 40(9): 1757-1764. doi:10.1097/IAE.0000000000002650
[33] Bruyère E, Miere A, Cohen SY, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101. doi:10.1097/IAE.0000000000001456
[34] Lai TYY, Cheung CMG. Myopic choroidal neovascularization: diagnosis and treatment[J]. Retina, 2016, 36(9): 1614-1621. doi:10.1097/IAE.0000000000001227
[35] Muakkassa NW, Chin AT, de Carlo T, et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2252-2259. doi:10.1097/IAE.0000000000000836
[36] Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615. doi:10.1136/bjophthalmol-2016-309162
[37] Mao JB, Shao YR, Yu JF, et al. Macular density alterations in myopic choroidal neovascularization and the effect of anti-VEGF on it[J]. Int J Ophthalmol, 2021, 14(8): 1205-1212. doi:10.18240/ijo.2021.08.11
[38] Uematsu S, Sakaguchi H, Sayanagi K, et al. Association between choriocapillaris flow deficit and choroidal neovascularization activity in eyes with myopic choroidal neovascularization[J]. Sci Rep, 2021, 11(1): 21947. doi:10.1038/s41598-021-01557-z
[39] Cohen SY, Tabary S, El Ameen A, et al. Vascular remodeling of choroidal neovascularization in older myopic patients treated with ranibizumab[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2019, 257(3): 485-493. doi:10.1007/s00417-018-04205-x
[40] Cheng LN, Lin YX, Liu L, et al. Assessment of conbercept therapy for high myopia macular neovascularization by optical coherence tomography angiography[J]. Sci Rep, 2020, 10(1): 16959. doi:10.1038/s41598-020-74073-1
[41] Cennamo G, Montorio D, Mazzella G, et al. Retinal and choriocapillaris vascular changes in patients affected by different clinical phenotypes of β-thalassemia: an optical coherence tomography angiography study[J]. Biology, 2021, 10(4): 276. doi:10.3390/biology10040276
[42] Giorno P, Iacono P, Scarinci F, et al. Microvasculature changes of myopic choroidal neovascularization and the predictive value of feeder vessel disappearance after ranibizumab treatment revealed using optical coherence tomography angiography[J]. Ophthalmologica, 2020, 243(4): 263-270. doi:10.1159/000504755
[43] Ueda-Consolvo T, Shibuya N, Oiwake T, et al. Using optical coherence tomography angiography to guide myopic choroidal neovascularization treatment: a 3-year follow-up study[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(11): 3295-3303. doi:10.1007/s00417-021-05270-5
[44] Wang J, Hormel TT, Gao LQ, et al. Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning[J]. Biomed Opt Express, 2020, 11(2): 927-944. doi:10.1364/BOE.379977
[45] Sawai, Miyata M, Uji A, et al. Usefulness of denoising process to depict myopic choroidal neovascularisation using a single optical coherence tomography angiography image[J]. Sci Rep, 2020, 10(1): 6172. doi:10.1038/s41598-020-62607-6
[1] WANG Xinyu, GAO Lifen, LU Hui, SONG Wenqi, YANG Yu. Related retinal manifestations in Parkinson's disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 156-162.
[2] ZHANG Yitong, LI Qingxiang, SHI Zhenghao, SHANG Lei, YUAN Yuqi, CAO Zine, MA Lina, LIU Haiqin, REN Xiaoyong, SHI Yewen. The sleep structure of Children with obstructive sleep apnea and the development of a sleep structure interpretation model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 126-132.
[3] ZHANG Xiaohan, WEI Li, YANG Kaili, CHEN Haiyan, LI Yansong, WANG Ping. Study on the change of OCTA and its correlation with visual acuity in patients with CSC before and after TCM syndrome differentiation and treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 115-122.
[4] DU Yueshanyi, WANG Xian, ZHANG Guoming. Progress in the diagnosis and treatment of retinopathy of prematurity using artificial intelligence [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 157-162.
[5] CHU Baorui, QU Yi. Preparation of siIKKβ loaded lipid nanoparticles and assessment of their effect on repolarization of macrophages [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 91-97.
[6] LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming. Research progress on the application of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 135-142.
[7] LI Pengwei, SU Guangming, LIU Jiangchuan, MU Yalin. Application of optical coherence tomography angiography in macular telangiectasia type 2 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 140-144.
[8] TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82.
[9] YANG Ru, ZHANG Yuguang, XU Xianghui, WU Xuelian, TAO Yuan, TAN Yue. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102.
[10] ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71.
[11] HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119.
[12] WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131.
[13] ZHANG Xinyu,,LEI Chunyan, ZHANG Meixia. Retinochoriodal changes associated with silicone oil tamponade detected by optical coherence tomography and optical coherence tomography angiography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 132-136.
[14] . Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162.
[15] Ocular ischemic syndrome(OIS)is usually undiagnosed or misdiagnosed due to its asymptomatic onset, complicated ocular manifestations, and the lack of awareness, and patients with OIS have a higher mortality. Improving the understanding, diagnosis, and treatment of OIS through multidisciplinary collaboration is key to investigating and preventing systemic vascular events as well as decreasing blindness and mortality. This review summarizes the recent advances in the epidemiology, clinical diagnosis, and management of OIS.. Recent ocular ischemic syndrome advancesWANG Luping Overview HUANG Yingxiang, WANG Yanling Guidance Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 200 -203 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 206 -208 .
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .