Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (2): 1-5.doi: 10.6040/j.issn.1673-3770.0.2024.381
• Expert Consensus • Next Articles
ZHANG Guoming, WEI Wenbin, LIN Haotian, CHI Wei, ZHANG Shaochong, ZHAO Peiquan, LEI Baiying, CHEN Youxin, WANG Yusheng, HE Mingguang, LIANG Jianhong, LU Hai, LU Fang, HUANG Xin, LIANG Xiaoling, ZHAO Xinyu, WU Zhenquan, YU Zhen, CUI Kaixuan, LIU Yaling, XIANG Daoman, CHEN Changzheng, ZHANG Zifeng, LIN Duoru, YU Shanshan, SUN Yue, TAN Tao, CHEN Yanxian, PENG Jie, DONG Li, CHENG Yong, ZHU Xuemei, YANG Peng, CHEN Shaobin
CLC Number:
| [1] 海峡两岸医药卫生交流协会眼科专业委员会小儿视网膜学组,中华医学会眼科学分会眼底病学组. 早产儿视网膜病变玻璃体腔注射抗血管内皮生长因子药物治疗的专家共识[J]. 中华眼底病杂志, 2021, 37(11): 836-840. doi:10.3760/cma.j.cn511434-20210916-00530 [2] Good WV. Retinopathy of prematurity incidence in children[J]. Ophthalmology, 2020, 127(4S): S82-S83. doi:10.1016/j.ophtha.2019.11.026 [3] 中华医学会儿科学分会眼科学组. 早产儿视网膜病变治疗规范专家共识[J]. 中华眼底病杂志, 2022, 38(1): 10-13. doi:10.3760/cma.j.cn511434-20211119-00647 [4] 中国妇幼保健协会儿童眼保健专业委员会儿童眼病筛查学组. 关于新生儿眼底筛查的专家共识[J]. 中国斜视与小儿眼科杂志, 2018, 26(3): 1-3. doi:10.3969/j.issn.1005-328X.2018.03.001 [5] 林浩添, 吴晓航. 加快基于眼科图像数据库的眼病人工智能辅助诊断平台建设[J]. 中华实验眼科杂志, 2018, 36(8): 577-580. doi:10.3760/cma.j.issn.2095-0160.2018.08.001 LIN Haotian, WU Xiaohang. Accelerating the construction of artificial intelligence diagnostic platform based on ophthalmic imaging database[J]. Chinese Journal of Experimental Ophthalmology, 2018, 36(8): 577-580. doi:10.3760/cma.j.issn.2095-0160.2018.08.001 [6] 王雅丛, 耿韶辉, 李艳涛, 等. Retcam-3检查足月新生儿视网膜出血分级的初步探讨[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 78-81,83. doi:10.6040/j. issn.1673-3770.0.2015.274 WANG Yacong, GENG Shaohui, LI Yantao, et al. An investigation of the standard of classification of retinal hemorrhage in full-term normal delivery newborns according to digital wide-angle retinal imaging device RetCam-3[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015, 29(6): 78-81,83. doi:10.6040/j. issn.1673-3770.0.2015.274 [7] 涂勤, 唐兰, 鄢晓丽. 数字眼底拍摄同质化培训应用效果探讨[J]. 中国继续医学教育, 2022, 14(16): 121-125. doi:10.3969/j.issn.1674-9308.2022.16.031 TU Qin, TANG Lan, YAN Xiaoli. Application effect of homogenization training in digital fundus photograph[J]. China Continuing Medical Education, 2022, 14(16): 121-125. doi:10.3969/j.issn.1674-9308.2022.16.031 [8] 晏丕松, 项毅帆, 李强, 等. 眼科数据中心和智能服务云平台的建设思路[J]. 眼科学报, 2021, 36(1): 97-103. doi:10.3978/j.issn.1000-4432.2021.01.19 YAN Pisong, XIANG Yifan, LI Qiang, et al. Establishment of ophthalmic data center and intelligent service cloud platform[J]. Journal of East China Normal University(Educational Sciences), 2021, 36(1): 97-103. doi:10.3978/j.issn.1000-4432.2021.01.19 [9] 潘建东,黄崇斌,陈峰,等. 新生儿视网膜出血及其相关影响因素观察分析[J]. 中华眼底病杂志, 2013, 29(3): 280-283. doi:10.3760/cma.j.issn.1005-1015.2013.03.012 PAN Jiandong, HUANG Chongbin, CHEN Feng, et al. Retinal hemorrhage in newborns and associated factors[J]. Chinese Journal of Ocular Fundus Diseases, 2013, 29(3): 280-283. doi:10.3760/cma.j.issn.1005-1015.2013.03.012 [10] 田汝银, 张国明, 谢昊, 等. 标准方位眼底摄像技术在早产儿视网膜病变远程筛查中的应用[J]. 眼科新进展, 2019, 39(6): 568-570. doi:10.13389/j.cnki.rao.2019.0131 TIAN Ruyin, ZHANG Guoming, XIE Hao, et al. Application of standard azimuth fundus camera technique in remote screening of retinopathy of prematurity[J]. Recent Advances in Ophthalmology, 2019, 39(6): 568-570. doi:10.13389/j.cnki.rao.2019.0131 [11] Chiang MF, Quinn GE, Fielder AR, et al. International classification of retinopathy of prematurity, third edition[J].Ophthalmology, 2021, 128(10): 51-68. doi:10.1016/j.ophtha.2021.05.031 [12] 中华医学会眼科学分会眼底病学组,中国医师协会眼科医师分会眼底病专委会. 中国早产儿视网膜病变分类和治疗专家共识(2023年)[J]. 中华眼底病杂志, 2023, 39(9): 720-727. doi:10.3760/cma.j.cn511434-20230815-00346 [13] Zhao XY, Chen SB, Zhang SF, et al. A fundus image dataset for intelligent retinopathy of prematurity system[J]. Sci Data, 2024, 11(1): 543. doi:10.1038/s41597-024-03362-5 [14] Bongini M, Rigutini L, Trentin E. Recursive neural networks for density estimation over generalized random graphs[J]. IEEE Trans Neural Netw Learn Syst, 2018, 29(11): 5441-5458. doi:10.1109/TNNLS.2018.2803523 [15] Li LH, Lin DR, Lin ZZ, et al. DeepQuality improves infant retinopathy screening[J]. NPJ Digit Med, 2023, 6(1): 192. doi:10.1038/s41746-023-00943-3 [16] Zhao XY, Lin ZZ, Yu SS, et al. An artificial intelligence system for the whole process from diagnosis to treatment suggestion of ischemic retinal diseases[J]. Cell Rep Med, 2023, 4(10): 101197. doi:10.1016/j.xcrm.2023.101197 [17] Sarki R, Ahmed K, Wang H, et al. Image preprocessing in classification and identification of diabetic eye diseases[J]. Data Sci Eng, 2021, 6(4): 455-471. doi:10.1007/s41019-021-00167-z [18] Liang XH, Li LP, Liu YY, et al. ECG_SegNet: an ECG delineation model based on the encoder-decoder structure[J]. Comput Biol Med, 2022, 145: 105445. doi:10.1016/j.compbiomed.2022.105445 [19] Hsu WY, Lin WY. Ratio-and-Scale-Aware YOLO for Pedestrian Detection[J]. IEEE Trans Image Process, 2021, 30: 934-947. doi: 10.1109/TIP.2020.3039574 [20] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149. doi:10.1109/TPAMI.2016.2577031 [21] van de Ruit M, Billeter M, Eisemann E. An efficient dual-hierarchy t-SNE minimization[J]. IEEE Trans Vis Comput Graph, 2022, 28(1): 614-622. doi:10.1109/TVCG.2021.3114817 [22] He T, Guo JX, Chen N, et al. MediMLP: using grad-CAM to extract crucial variables for lung cancer postoperative complication prediction[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1762-1771. doi:10.1109/JBHI.2019.2949601 [23] Lin DR, Xiong JH, Liu CX, et al. Application of Comprehensive Artificial intelligence Retinal Expert(CARE)system: a national real-world evidence study[J]. Lancet Digit Health, 2021, 3(8): e486-e495. doi:10.1016/S2589-7500(21)00086-8 |
| [1] | SHEN Jiaqi, LI Xiaosa, BI Yanlong, ZHANG Jingfa. The application of artificial intelligence in screening, diagnosis and prognosis of diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(5): 153-159. |
| [2] | XIE Yulin, LEI Dapeng. Advances in the pathological study of artificial intelligence in the lymph node metastasis of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 124-129. |
| [3] | HU Yarou, ZHAO Xinyu, WU Zhenquan, FAN Zixin, YU Zhen, LIU Yaling, CHEN Tingyi, ZENG Jian, ZHANG Guoming. Research progress on refractive status and ocular biometrics in preterm births [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 144-150. |
| [4] | WU Lili, QU Yi. Application of optical tomography angiography and artificial intelligence in choroidal neovascularization secondary to pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 144-149. |
| [5] | ZHANG Yitong, LI Qingxiang, SHI Zhenghao, SHANG Lei, YUAN Yuqi, CAO Zine, MA Lina, LIU Haiqin, REN Xiaoyong, SHI Yewen. The sleep structure of Children with obstructive sleep apnea and the development of a sleep structure interpretation model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 126-132. |
| [6] | DU Yueshanyi, WANG Xian, ZHANG Guoming. Progress in the diagnosis and treatment of retinopathy of prematurity using artificial intelligence [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 157-162. |
| [7] | LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming. Research progress on the application of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 135-142. |
| [8] | HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. |
| [9] | WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131. |
| [10] | RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124. |
| [11] | CHEN Haibing, WEI Ya'nan, XU Xiaoquan, CHEN Xi. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 40-45. |
| [12] | ZHU Zhiling, LI SongOverview,GUAN GuofangGuidance. Application and prospect of artificial intelligence in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. |
| [13] | YUAN Haiqin, CHEN Miaohong, ZHAO Jinfeng, ZHANG Guoming. Refractive study of children with spontaneous regression of retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 115-118. |
| [14] | Changyu QIU,Jun ZHOU,De′en ZHUANG,Qing YANG,Meiping LU,Lei CHENG. Artificial intelligence technology application in disclosing allergic rhinitis patients′ needs to otolaryngologists [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 88-94. |
| [15] | GUO Bao, ZHANG Deyong. Clinical study of compaq combined with laser in the treatment of retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 92-97. |
|