山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (1): 125-130.doi: 10.6040/j.issn.1673-3770.0.2020.102
• • 上一篇
李文静综述刘鸣审校
LI WenjingOverview,LIU MingGuidance
摘要: 喉恶性肿瘤是头颈部常见的恶性肿瘤之一。尽管喉癌的治疗手段有了很大的改善,但在过去的30年中,生存率仍然不理想。C2H2型锌指蛋白是人类最大的转录因子家族,具有多个排列整齐的锌指的特点。C2H2型锌指蛋白除了参与正常的生物学,包括转录调节,器官、组织的发育分化作用外,还与肿瘤的发生发展有关。目前,锌指蛋白家族已经被证实在很多肿瘤中有发挥着重要的作用。对C2H2型锌指蛋白家族以及其与喉恶性肿瘤的研究进展进行综述。
中图分类号:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492. [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA A Cancer J Clin, 2020, 70(1): 7-30. doi:10.3322/caac.21590. [3] 中华耳鼻咽喉头颈外科杂志编辑委员会头颈外科组, 中华医学会耳鼻咽喉头颈外科学分会头颈学组, 李晓明. 喉癌外科手术及综合治疗专家共识[J]. 中华耳鼻咽喉头颈外科杂志, 2014, 49(8): 620-626. doi:10.3760/cma.j.issn.1673-0860.2014.08.002. [4] 孙笑晗,李娜. 喉保留策略在喉癌治疗中的应用—美国临床肿瘤学会临床实践指南更新(2017)介绍[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 40-42. doi:10.6040/j.issn.1673-3770.1.2019.042. SUN Xiaohan, LI Na. Application of laryngeal retention strategy in the treatment of laryngeal cancer - introduction to the clinical practice guide of the American society of clinical oncology(2017)[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 40-42. doi:10.6040/j.issn.1673-3770.1.2019.042. [5] Yang XL, Liu GL, Zang LY, et al. ZNF703 is overexpressed in papillary thyroid carcinoma tissues and mediates K1 cell proliferation[J]. Pathol Oncol Res, 2020, 26(1): 355-364. doi:10.1007/s12253-018-0494-5. [6] Song XL, Zhu MH, Zhang FH, et al. ZFX promotes proliferation and metastasis of pancreatic cancer cells via the MAPK pathway[J]. Cell Physiol Biochem, 2018, 48(1): 274-284. doi:10.1159/000491727. [7] Kim YJ, Jang W, Piao XM, et al. ZNF492 and GPR149 methylation patterns as prognostic markers for clear cell renal cell carcinoma: Array-based DNA methylation profiling[J]. Oncol Rep, 2019, 42(1): 453-460. doi:10.3892/or.2019.7151. [8] Samadani AA, Nikbakhsh N, Taheri H, et al. CDX1/2 and KLF5 expression and epigenetic modulation of sonic hedgehog signaling in gastric adenocarcinoma[J]. Pathol Oncol Res, 2019, 25(3): 1215-1222. doi:10.1007/s12253-019-00594-4. [9] Liang H, Sun H, Yang J, et al. miR-145-5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5[J]. Mol Med Rep, 2018, 17(6): 8332-8338. doi:10.3892/mmr.2018.8880. doi:10.3892/mmr.2018.8880. [10] Lu M, Wu Y, Zeng B, et al. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis[J]. Biochemical and Biophysical Research Communications, 2020, 526(2): 306-313. doi:10.1016/j.bbrc.2020.03.084. [11] Mann R. Molecular mechanisms of selector gene function and evolution[J]. Curr Opin Genet Dev, 2002, 12(5): 592-600. doi:10.1016/s0959-437x(02)00344-1. [12] Tupler R, Perini G, Green MR. Expressing the human genome[J]. Nature, 2001, 409(6822): 832-833. doi:10.1038/35057011. [13] Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors[J]. Cell, 2018, 172(4): 650‐665. doi:10.1016/j.cell.2018.01.029. [14] Schmitges FW, Radovani E, Najafabadi HS, et al. Multiparameter functional diversity of human C2H2 zinc finger proteins[J]. Genome Res, 2016, 26(12): 1742-1752. doi:10.1101/gr.209643.116. [15] Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors[J]. PLoS Genet, 2009, 5(1): e1000325. doi:10.1371/journal.pgen.1000325. [16] Gamsjaeger R, Liew C, Loughlin F, et al. Sticky fingers: zinc-fingers as protein-recognition motifs[J]. Trends Biochem Sci, 2007, 32(2): 63-70. doi:10.1016/j.tibs.2006.12.007. [17] Brown RS. Zinc finger proteins: getting a grip on RNA[J]. Curr Opin Struct Biol, 2005, 15(1): 94-98. doi:10.1016/j.sbi.2005.01.006. [18] Mackeh R, Marr AK, Fadda A, et al. C2H2-type zinc finger proteins: evolutionarily old and new partners of the nuclear hormone receptors[J]. Nucl Recept Signal, 2018, 15: 155076291880107. doi:10.1177/1550762918801071. [19] Chen CH. The role of miR-101 and miR-135a in reprogramming of somatic cells into induced pluripotent stem cells[D]. The University of Hong Kong Libraries, Master of Philosophy, 2012. doi:10.5353/th_b4852157. [20] Bellanger A, Donini CF, Vendrell JA, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone[J]. J Pathol, 2017, 242(1): 73-89. doi:10.1002/path.4882. [21] Ma MQ, Zhang HD, Tang P, et al. Association of Kruppel-like factor 4 expression with the prognosis of esophageal squamous cell carcinoma patients[J]. Int J Clin Exp Pathol, 2014, 7(10): 6679-6685. [22] 齐力, 侯艳, 宋丽华. 转录因子YY1促进下咽癌细胞的迁移能力[J]. 基础医学与临床, 2019, 39(9): 1320-1324. doi:10.16352/j.issn.1001-6325.2019.09.019. QI Li, HOU Yan, SONG Lihua. Transcription factor YY1 promotes the migration ability of hypopharyngeal carcinoma cells[J]. Basic & Clinical Medicine, 2019, 39(9): 1320-1324. doi:10.16352/j.issn.1001-6325.2019.09.019. [23] Yang L, Han Y, Suarez SF, et al. A tumor suppressor and oncogene: the WT1 story[J]. Leukemia, 2007, 21(7): 1603. doi:10.1038/sj.leu.2404624. [24] Rampal R, Figueroa ME. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia[J]. Haematologica, 2016, 101(6): 672-679. doi:10.3324/haematol.2015.141796. [25] Frietze S, O'Geen H, Littlepage LE, et al. Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha[J]. BMC Genom, 2014, 15(1): 520. doi:10.1186/1471-2164-15-520. [26] Harder L, Puller AC, Horstmann MA. ZNF423: Transcriptional modulation in development and cancer[J]. Mol Cell Oncol, 2014, 1(3): e969655. doi:10.4161/23723548.2014.969655. [27] Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key?[J]. Gene, 1999, 236(2): 197-208. doi:10.1016/S0378-1119(99)00261-9. [28] Park K. Characterization of functional domains within the multifunctional transcription factor, YY1[J]. J Biol Chem, 1995, 270(50): 30213-30220. doi:10.1074/jbc.270.50.30213. [29] Shi JM, Hao AX, Zhang Q, et al. The role of YY1 in oncogenesis and its potential as a drug target in cancer therapies[J]. Curr Cancer Drug Targets, 2015, 15(2): 145-157. doi:10.2174/1568009615666150131124200. [30] 邱广斌, 邱广蓉, 徐振明, 等. 6q25区域内一个新基因MTLC的克隆及特性分析[J]. 中华医学遗传学杂志, 2003, 20(2): 94-97. doi:10.3760/j.issn:1003-9406.2003.02.002. QIU Guangbin, QIU Guangrong, XU Zhenming, et al. Cloning and characterization of MTLC, a novel gene in 6q25[J]. Chinese Journal of Medical Genetics, 2003, 20(2): 94-97. doi:10.3760/j.issn:1003-9406.2003.02.002. [31] Qu SY, Sun YY, Li YH, et al. YY1 directly suppresses MYCT1 leading to laryngeal tumorigenesis and progress[J]. Cancer Med, 2017, 6(6): 1389-1398. doi:10.1002/cam4.1073. [32] Zhang ZX, Zhang WN, Sun YY, et al. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis[J]. Oncotargets Ther, 2018, 11: 1323-1331. doi:10.2147/ott.s156582. [33] McConnell BB, Yang VW. Mammalian krüppel-like factors in health and diseases[J]. Physiol Rev, 2010, 90(4): 1337-1381. doi:10.1152/physrev.00058.2009. [34] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. doi:10.1016/j.cell.2006.07.024. [35] Ghaleb AM, Yang VW. Krüppel-like factor 4(KLF4): What we currently know[J]. Gene, 2017, 611: 27-37. doi:10.1016/j.gene.2017.02.025. [36] 刘华松, 徐兰兰, 张军, 等. 过表达KLF4抑制非小细胞肺癌增殖及上皮间质转化的作用机制[J]. 中国现代医学杂志, 2017, 27(19): 40-44. doi:10.3969/j.issn.1005-8982.2017.19.008. LIU Huasong, XU Lanlan, ZHANG Jun, et al. Mechanisms of KLF4 over-expression in inhibiting proliferation and EMT of NSCLC[J]. China Journal of Modern Medicine, 2017, 27(19): 40-44. doi:10.3969/j.issn.1005-8982.2017.19.008. [37] Zhao RR, Liu ZX, Xu WT, et al. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism[J]. Cancer Med, 2020, 9(7): 2551-2563. doi:10.1002/cam4.2892. [38] 李娜, 李赟, 万小亚, 等. MicroRNA-34a调控KLF4转录因子在结直肠癌5-Fu耐药中的作用[J]. 中国肿瘤, 2020, 29(2): 148-153. doi:10.11735/j.issn.1004-0242.2020.02.A011. LI Na, LI Yun, WAN Xiaoya, et al. KLF4 transcription factor regulated by MicroRNA-34a in 5-fu chemotherapy resistance of colorectal cancer[J]. China Cancer, 2020, 29(2): 148-153. doi:10.11735/j.issn.1004-0242.2020.02.A011. [39] 潘恩山, 李煜罡, 朱晓光. miR-375通过抑制KLF4促进前列腺癌细胞的迁移和侵袭[J]. 重庆医学, 2017, 46(23): 3184-3188. doi:10.3969/j.issn.1671-8348.2017.23.005. PAN Enshan, LI Yugang, ZHU Xiaoguang. miR-375 promotes prostate cancer cell migration and invasion by targeting KLF4[J]. Chongqing Medicine, 2017, 46(23): 3184-3188. doi:10.3969/j.issn.1671-8348.2017.23.005. [40] Guo Y, An R, Zhao R, et al. miR-375 exhibits a more effective tumor-suppressor function in laryngeal squamous carcinoma cells by regulating KLF4 expression compared with simple co-transfection of miR-375 and miR-206[J]. Oncol Rep, 2016, 36(2): 952-960. doi:10.3892/or.2016.4852. [41] Zheng TL, Cen K. MiR-92a inhibits proliferation and promotes apoptosis of OSCC cells through Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(9): 4803-4809. doi:10.26355/eurrev_202005_21169. [42] Greco A, de Virgilio A, Rizzo MI, et al. The prognostic role of E-cadherin and β-catenin overexpression in laryngeal squamous cell carcinoma[J]. Laryngoscope, 2016, 126(4): E148-E155. doi:10.1002/lary.25736. [43] Chanchevalap S. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells[J]. Nucleic Acids Res, 2006, 34(4): 1216-1223. doi:10.1093/nar/gkl014. [44] Kadonaga JT, Carner KR, Masiarz FR, et al. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain[J]. Cell, 1987, 51(6): 1079-1090. doi:10.1016/0092-8674(87)90594-0. [45] Li XC, Liu XS, Xu YJ, et al. KLF5 promotes hypoxia-induced survival and inhibits apoptosis in non-small cell lung cancer cells via HIF-1α[J]. Int J Oncol, 2014, 45(4): 1507-1514. doi:10.3892/ijo.2014.2544. [46] Yang Y, Nakagawa H, Tetreault MP, et al. Loss of transcription factor KLF5 in the context of p53 ablation drives invasive progression of human squamous cell cancer[J]. Cancer Res, 2011, 71(20): 6475-6484. doi:10.1158/0008-5472.can-11-1702. [47] Yang YZ, Tarapore RS, Jarmel MH, et al. p53 mutation alters the effect of the esophageal tumor suppressor KLF5 on keratinocyte proliferation[J]. Cell Cycle, 2012, 11(21): 4033-4039. doi:10.4161/cc.22265. [48] Liu FF, Dong L, Yang X, et al. KLF5 silence attenuates proliferation and epithelial-mesenchymal transition induction in Hep-2 cells through NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3867-3875. doi:10.26355/eurrev_201905_17814. [49] Zhang L, Sun J, Wang B, et al. MicroRNA-10b triggers the epithelial-mesenchymal transition(EMT)of laryngeal carcinoma hep-2 cells by directly targeting the E-cadherin[J]. Appl Biochem Biotechnol, 2015, 176(1): 33-44. doi:10.1007/s12010-015-1505-6. [50] Wu X, Ruan YY, Jiang H, et al. MicroRNA-424 inhibits cell migration, invasion, and epithelial mesenchymal transition by downregulating doublecortin-like kinase 1 in ovarian clear cell carcinoma[J]. Int J Biochem Cell Biol, 2017, 85: 66-74. doi:10.1016/j.biocel.2017.01.020. [51] Mao XH, Miao SS, He HJ, et al. Krüppel-like factor 5: a novel biomarker for lymph node metastasis and recurrence in supraglottic squamous cell laryngeal carcinoma[J]. Tumor Biol, 2014, 35(1): 623-629. doi:10.1007/s13277-013-1086-3. [52] Liu JY, Lu JB, Xu Y. MicroRNA-153 inhibits the proliferation and invasion of human laryngeal squamous cell carcinoma by targeting KLF5[J]. Exp Ther Med, 2016, 11(6): 2503-2508. doi:10.3892/etm.2016.3189. [53] Galan-Caridad JM, Harel S, Arenzana TL, et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells[J]. Cell, 2007, 129(2): 345-357. doi:10.1016/j.cell.2007.03.014. [54] Arnold A, Soong CP. New role for ZFX in oncogenesis[J]. Cell Cycle, 2014, 13(22): 3465-3466. doi:10.4161/15384101.2014.980693. [55] Yang F, Ma H, Feng L, et al. Zinc finger protein x-linked(ZFX)contributes to patient prognosis, cell proliferation and apoptosis in human laryngeal squamous cell carcinoma[J]. Int J Clin Exp Pathol, 2015, 8(11): 13886-13899. [56] Zhang YM, Hu HL. Long non-coding RNA CCAT1/miR-218/ZFX axis modulates the progression of laryngeal squamous cell cancer[J]. Tumour Biol, 2017, 39(6): 101042831769941. doi:10.1177/1010428317699417. |
[1] | 李富, 赵书佑. 肺癌肿瘤抑制因子-1在喉鳞癌组织中的表达及其意义[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 36-38. |
|