山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 11-16.doi: 10.6040/j.issn.1673-3770.0.2021.126
李元超1,2,3,吴玮1,2,3,王刚2,3,屈昌北2,王磊2,芦文俊2,李丹2,韩浩伦2,刘钢2
LI Yuanchao1,2,3, WU Wei1,2,3, WANG Gang2,3, QU Changbei2, WANG Lei2, LU Wenjun2, LI Dan2, HAN Haolun2, LIU Gang2
摘要: 目的 探讨模拟失重及飞船舱内中等强度稳态噪声对大鼠听功能影响的时效关系。 方法 96只雄性SD大鼠随机分为失重组、噪声组、失重+噪声组和对照组,各24只鼠,每组大鼠再按暴露时间随机分为1周、4周组,各12只鼠,最后在暴露结束后即刻(P0)测听并处死一半大鼠作为暴露即刻组,另一半脱离暴露环境7 d后(P7)测听并处死作为恢复组,各6只鼠。失重模拟采用尾部悬吊即Morey Holton法模拟失重,噪声模拟采用白噪声信号发生系统模拟飞船舱内中等强度稳态噪声[8 h/d 的(72±2)dB SPL稳态噪声+16 h/d的(50±2)dB SPL稳态噪声]。分别在暴露前(B0)、P0、P7检测ABR阈值和畸变产物耳声发射(DPOAE)。 结果 失重组、噪声组、失重+噪声组和对照组的ABR阈值在暴露1周P0时分别为(10.83±5.25)、(8.13±4.62)、(13.54±8.53)、(7.08±2.52)dB SPL;在暴露1周P7时分别为(6.67±2.46)、(5.83±1.95)、(8.75±4.33)、(7.92±3.34)dB SPL;在暴露4周P0时分别为(18.13±7.19)、(16.04±5.71)、(19.58±8.33)、(6.04±2.54)dB SPL;在暴露4周P7时分别为(7.92±3.96)、(7.92±3.34)、(14.17±7.93)、(6.25±2.26)dB SPL。失重组和失重+噪声组大鼠暴露1周后ABR阈值较暴露前升高,且随时间延长进一步加重,噪声组ABR阈值在暴露1周时与暴露前差异无统计学意义(P=0.054),在暴露4周时升高;失重+噪声暴露4周组ABR阈值在P7时与P0时差异无统计学意义,未见恢复,其余暴露组在P7时ABR阈值完全恢复。暴露前后各实验组DPOAE引出率无统计学差异。 结论 失重及稳态噪声对听功能的损伤有明显的时间累积效应,二者具有协同作用且失重占据主导。4周模拟失重或飞船舱内中等强度稳态噪声单独暴露导致的大鼠ABR阈移是可逆的,但4周的复合暴露可能已造成不可逆性听损伤,且主要损伤内毛细胞的功能。
中图分类号:
[1] 杨剑, 刘博, 韩德民. 航天性听损伤及其机制探讨[J]. 国外医学(耳鼻咽喉科学分册), 2004, 28(6):374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015. YANG Jian, LIU Bo, HAN Deming. Space induced hearing loss and its mechanism [J]. Foreign Medicine(Otolaryngology), 2004,28(6): 374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015. [2] Roller CA, Clark JB. Short-duration space flight and hearing loss[J]. Otolaryngol Head Neck Surg,2003,129(1):98-106. doi: 10.1016/S0194-5998(03)00523-0. [3] 陈娜,吴玮,丁瑞英,等.模拟载人飞船内微重力和噪声环境下大鼠耳蜗毛细胞的形态学变化[J].北京大学学报(医学版),2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021. CHEN Na, WU Wei, DING Ruiying, et al. Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise [J]. Journal of Peking University(Health Sciences), 2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021. [4] 王博, 李娟娟, 李秀霞,等. 4人180天受控生态生保集成试验乘员听力变化研究[J]. 航天医学与医学工程, 2018, 31(2):289-294. doi: 10.16289/j.cnki.1002-0837.2018.02.028. WANG Bo, LI juanjuan, LI Xiuxia, et al. Study on hearing change of 4 crew members in 180 day controlled ecological health insurance integrated test [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 289-294. doi:10.16289/j.cnki.1002-0837.2018.02.028. [5] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects[J]. J Appl Physiol(1985),2002,92(4):1367-1377. doi:10.1152/japplphysiol.00969.2001. [6] 吴玮,韩浩伦,王鸿南,等.模拟失重条件下飞船内噪声对豚鼠耳蜗形态与功能的影响[J].中华耳科学杂志,2010,8(1):95-99. doi:10.3969/j.issn.1672-2922.2010.01.020. WU Wei, HAN Haolun, WANG hongnan, et al. Changes in cochlear ultrastructure and hearing in guinea pigs in response to simulated weightlessness and space craft noise [J]. Chinese Journal of Otology, 2010,8(1): 95-99. doi:10.3969/j.issn.1672-2922.2010.01.020. [7] 周莹,吴玮,韩浩伦,等.模拟飞船舱内中长期失重及噪声复合因素对大鼠听器官的影响[J].中国耳鼻咽喉头颈外科,2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004. ZHOU Ying, WU Wei, HAN Haolun, et al. Effects of simulated noise-weightlessness combined factors in spaceship on auditory function of rats after a medium-long term[J]. Chin Arch Otolaryngol Head Neck Surg, 2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004. [8] Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hearing Res, 2017, 352:12-22. doi:10.1016/j.heares.2016.10.015. [9] Darvishi E, Golmohammadi R, Faradmal J, et al. Psychophysiological responses to medium levels of occupational noise: an exposure–response relationships[J]. Acoust Aust, 2019,47(3):217-228. doi:10.1007/s40857-019-00159-0. [10] Liu XP, Li L, Chen GD, et al. How low must you go? Effects of low-level noise on cochlear neural response[J]. Hearing Res, 2020, 392:107980. doi:10.1016/j.heares.2020.107980. [11] Feng S, Yang L, Hui L, et al. Long-term exposure to low-intensity environmental noise aggravates age-related hearing loss via disruption of cochlear ribbon synapses[J]. Am J Transl Res, 2020, 12(7):3674-3687. PMID: 32774726. [12] 宋峰, 甘彬, 许安廷, 等. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204. SONG Feng, GAN Bin, XU Anting, et al. Long-term low intensity noise exposure reduce the number of ribbon synapses in guinea pigs [J]. Journal of Otolaryngology and Ophthalmology of Shandong University,2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204. [13] Shi L, Chang Y, Li X, et al. Cochlear synaptopathy and noise-induced hidden hearing loss[J]. Neural Plast, 2016, 2016:6143164-6143169. doi:10.1155/2016/6143164. [14] 王顶, 马秀岚. 噪声性耳聋机制的研究进展[J]. 中华耳科学杂志, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019. WANG Ding, MA Xiulan. Research advances on mechanisms of noise-induced hearing loss[J]. Chinese Journal of Otology, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019. [15] 徐昂, 刘亭彦, 韩锋产. 自噬与内耳发育及听觉功能的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 32(2):123-125. doi:10.6040/j.issn.1673-3770.0.2018.398. XU Aang, LIU Tingyan, HAN Fengchan. Progress of research on autophagy, inner ear development, and auditory function[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 32(2): 123-125. doi:10.6040/j.issn.1673-3770.0.2018.398. [16] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss[J]. J Neurosci. 2009, 29(45):14077-14085. doi:10.1523/JNEUROSCI.2845-09.2009. [17] Liberman MC. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration [J]. Adv Exp Med Biol. 2016, 875: 1-7. doi:10.1007/978-1-4939-2981-8_1. [18] Valero M, Burton J A, Hauser S N, et al. Noise-induced cochlear synaptopathy in rhesus monkeys(Macaca mulatta)[J]. Hearing Res, 2017, 353: 213-223. doi:10.1016/j.heares.2017.07.003. [19] Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiologica, 2020, 228(3):e13434,n/a. doi:10.1111/apha.13434. [20] Marshall-Goebel K, Damani R, Bershad EM. Brain physiological response and adaptation during spaceflight. Neurosurgery, 2019, 85(5): E815-821. [21] 张驰,吴玮,韩浩伦,等.模拟航天环境对大鼠内耳淋巴液容积的影响[J].中华耳科学杂志,2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030. ZHANG Chi, WU Wei, HAN Haolun, et al. Effects of simulated spacecraft environment on rat auditory system and inner ear lymphatic fluid volume[J]. Chinese Journal of Otology, 2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030. [22] Hughson RL, Helm A, Durante M. Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol, 2018,15(3):167-180. doi:10.1038/nrcardio.2017.157. [23] 詹皓. 航天失重环境中机体的氧化应激损伤与防护措施研究进展[J]. 中华航空航天医学杂志, 2015, 26(4):296-302. doi: 10.3760/cma.j.issn.1007-6239.2015.04.016. ZHAN Hao. Advances on space weightlessness induced oxidative stress injury and the protective measures[J]. Chinese Journal of Aerospace Medicine, 2015, 26(4):296-302. doi:10.3760/cma.j.issn.1007-6239.2015.04.016. [24] 李英贤, 凌树宽, 赵亚丽,等. 航天医学问题的细胞分子基础研究进展[J]. 航天医学与医学工程, 2018, 31(2):140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008. LI Yingxian, LING Shukuan, ZHAO Yali, et al. Research progress on cellular and molecular basis of aerospace medicine [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008. [25] 李兴启. 听觉诱发反应及应用[M]. 北京:人民军医出版社, 2007. [26] Lobarinas E, Salvi R, D Ding. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss[J]. Jaro-J Assoc Res Oto, 2016, 17(2): 89-101. doi:10.1007/s10162-015-0550-8. [27] Colleen G, Le P. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature[J]. Int J Audiol, 2019, 58(Supp1):S3-S32. doi:10.1080/14992027.2018.1534010. |
[1] | 段新艳,宋忠义,王宁,訾希存, 潘新良. DPOAE与高刺激率ABR在听力正常耳鸣患者中的应用价值[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 6-10. |
[2] | 倪坤, 孙世冰, 李晓艳. 1 000 Hz声导抗在高危新生儿听力筛查中的应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 43-47. |
[3] | 陈伟,胡中南,童钊君,李湘宇,刘文君. 青中年无眩晕、心脑血管疾病病史的突发性聋患者高刺激率听性脑干反应特征分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 45-49. |
[4] | 宋峰,甘彬,许安廷,王坚. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 41-44. |
[5] | 刘志奇1,2,刘立思1,杨琨3 . 新生儿听力筛查11894例结果分析[J]. 山东大学耳鼻喉眼学报, 2013, 27(2): 8-12. |
[6] | 曹效平,王天生,顾东胜,黄爱萍. 正常听力耳鸣患者听尼特TM检测及高刺激率听觉脑干反应结果及分析[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 6-9. |
[7] | 鄢慧琴,王海涛,周枫,黄利芬 . 正常豚鼠听性脑干反应与听性稳态反应的对比[J]. 山东大学耳鼻喉眼学报, 2011, 25(3): 43-45. |
[8] | 余崇仙,杨克林,张晓敏,汪平. 3~4月龄及5~6月龄婴儿听性脑干反应的正常值分析[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 17-20. |
[9] | 周彬1,徐平1,李艳1,马肖男1,吴硕1,夏红2. JNK抑制剂CEP-1347对噪声损伤耳蜗的保护作用及意义[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 25-28. |
[10] | 高 下,Fleischer Grald,丁小琼, 张 倩 . 高原低氧环境下鞭炮噪声对正常发育儿童听觉的影响[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 24-27 . |
|