山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 11-16.doi: 10.6040/j.issn.1673-3770.0.2021.126

• • 上一篇    下一篇

模拟失重及飞船内稳态噪声对大鼠听功能的影响

李元超1,2,3,吴玮1,2,3,王刚2,3,屈昌北2,王磊2,芦文俊2,李丹2,韩浩伦2,刘钢2   

  1. 1. 北京大学解放军306医院教学医院, 北京 100101;
    2. 战略支援部队特色医学中心 耳鼻喉科, 北京 100101;
    3. 国家环境保护环境感官应激与健康重点实验室, 北京 100101
  • 发布日期:2021-09-29
  • 通讯作者: 吴玮. E-mail:ent306ww@126.com
  • 基金资助:
    航天医学基础与应用国家重点实验室开放课题(SMFA19K06)

Effects of simulated weightlessness and continuous noise in a spaceship on auditory function of rats

LI Yuanchao1,2,3, WU Wei1,2,3, WANG Gang2,3, QU Changbei2, WANG Lei2, LU Wenjun2, LI Dan2, HAN Haolun2, LIU Gang2   

  1. 1. The 306th Hospital of PLA-PeKing University Teaching Hospital, Beijing 100101, China;
    2. Department of Otolaryngology, Strategic Support Force Medical Center, Beijing 100101, China;
    3. State Environmental Protection Key Laboratory of Environmental Sense Organ Stress and Health, Beijing 100101, China
  • Published:2021-09-29

摘要: 目的 探讨模拟失重及飞船舱内中等强度稳态噪声对大鼠听功能影响的时效关系。 方法 96只雄性SD大鼠随机分为失重组、噪声组、失重+噪声组和对照组,各24只鼠,每组大鼠再按暴露时间随机分为1周、4周组,各12只鼠,最后在暴露结束后即刻(P0)测听并处死一半大鼠作为暴露即刻组,另一半脱离暴露环境7 d后(P7)测听并处死作为恢复组,各6只鼠。失重模拟采用尾部悬吊即Morey Holton法模拟失重,噪声模拟采用白噪声信号发生系统模拟飞船舱内中等强度稳态噪声[8 h/d 的(72±2)dB SPL稳态噪声+16 h/d的(50±2)dB SPL稳态噪声]。分别在暴露前(B0)、P0、P7检测ABR阈值和畸变产物耳声发射(DPOAE)。 结果 失重组、噪声组、失重+噪声组和对照组的ABR阈值在暴露1周P0时分别为(10.83±5.25)、(8.13±4.62)、(13.54±8.53)、(7.08±2.52)dB SPL;在暴露1周P7时分别为(6.67±2.46)、(5.83±1.95)、(8.75±4.33)、(7.92±3.34)dB SPL;在暴露4周P0时分别为(18.13±7.19)、(16.04±5.71)、(19.58±8.33)、(6.04±2.54)dB SPL;在暴露4周P7时分别为(7.92±3.96)、(7.92±3.34)、(14.17±7.93)、(6.25±2.26)dB SPL。失重组和失重+噪声组大鼠暴露1周后ABR阈值较暴露前升高,且随时间延长进一步加重,噪声组ABR阈值在暴露1周时与暴露前差异无统计学意义(P=0.054),在暴露4周时升高;失重+噪声暴露4周组ABR阈值在P7时与P0时差异无统计学意义,未见恢复,其余暴露组在P7时ABR阈值完全恢复。暴露前后各实验组DPOAE引出率无统计学差异。 结论 失重及稳态噪声对听功能的损伤有明显的时间累积效应,二者具有协同作用且失重占据主导。4周模拟失重或飞船舱内中等强度稳态噪声单独暴露导致的大鼠ABR阈移是可逆的,但4周的复合暴露可能已造成不可逆性听损伤,且主要损伤内毛细胞的功能。

关键词: 失重, 噪声, 听性脑干反应, 畸变产物耳声发射

Abstract: Objective To explore the time-effect relationship of simulated weightlessness and moderate-intensity continuous noise in a spaceship on the auditory function of rats. Methods Ninety-six male Sprague-Dawley(SD)rats were randomly divided into the weightlessness group, noise group, weightlessness + noise group, and a control group(n=24 per group). On this basis, the rats in each group were divided into 1-week and 4-week groups according to exposure time(n=12 per subgroup). Half of the rats were killed immediately after exposure(P0)as the immediate after exposure group, and the other half were killed 7 days after exposure(P7)as the recovery group(n=6). The tail suspension method(Morey Holton method)was used to simulate weightlessness, and the white noise signal generation system was used to simulate moderate continuous noise:(72±2)dB sound pressure level(SPL)continuous noise for 8 h /d and(50±2)dB SPL continuous noise for 16 h /d in the spaceship. Auditory brainstem response(ABR)thresholds and distortion product otoacoustic emission(DPOAE)were measured at B0, P0, and P7. Results ABR thresholds were(10.83±5.25),(8.13±4.62),(13.54±8.53),(7.08±2.52)dB SPL in the weightlessness group, noise group, weightlessness + noise group, and control group at 1 week P0;(6.67±2.46),(5.83±1.95),(8.75±4.33),(7.92±3.34)dB SPL at 1 week P7;(18.13±7.19),(16.04±5.71),(19.58±8.33),(6.04±2.54)dB SPL at 4 weeks P0; and(7.92±3.96),(7.92±3.34),(14.17±7.93), and(6.25±2.26)dB SPL at 4 weeks P7. The ABR threshold of rats in the weightlessness and weightlessness + noise groups after exposure for 1 week were higher than before exposure and became further aggravated as time progressed. However, there was no significant difference in ABR threshold of noise group between after 1 week exposure and before exposure, although there was significant difference 4 weeks after exposure. There was no significant difference in ABR threshold in the weightlessness + noise group between P7 and P0; thus, the ABR threshold showed no recovery. The ABR threshold of the other exposure groups recovered completely at P7. There was no significant difference in the DPOAE extraction rate between the experimental groups before and after exposure. Conclusion Weightlessness and continuous noise have a significant cumulative and synergistic effect on hearing impairment, with weightlessness being dominant. The ABR threshold shift induced by 4-week simulated weightlessness or moderate continuous noise exposure alone is reversible, but the combined exposure for 4 weeks may have caused irreversible hearing damage, with damage mainly linked to the function of inner hair cells.

Key words: Weightlessness, Noise, Auditory brainstem response, Distortion product otoacoustic emission

中图分类号: 

  • R764.5
[1] 杨剑, 刘博, 韩德民. 航天性听损伤及其机制探讨[J]. 国外医学(耳鼻咽喉科学分册), 2004, 28(6):374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015. YANG Jian, LIU Bo, HAN Deming. Space induced hearing loss and its mechanism [J]. Foreign Medicine(Otolaryngology), 2004,28(6): 374-374. doi: 10.3760/cma.j.issn.1673-4106.2004.06.015.
[2] Roller CA, Clark JB. Short-duration space flight and hearing loss[J]. Otolaryngol Head Neck Surg,2003,129(1):98-106. doi: 10.1016/S0194-5998(03)00523-0.
[3] 陈娜,吴玮,丁瑞英,等.模拟载人飞船内微重力和噪声环境下大鼠耳蜗毛细胞的形态学变化[J].北京大学学报(医学版),2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021. CHEN Na, WU Wei, DING Ruiying, et al. Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise [J]. Journal of Peking University(Health Sciences), 2017,49(3):501-505. doi: 10.3969/j.issn.1671-167X.2017.03.021.
[4] 王博, 李娟娟, 李秀霞,等. 4人180天受控生态生保集成试验乘员听力变化研究[J]. 航天医学与医学工程, 2018, 31(2):289-294. doi: 10.16289/j.cnki.1002-0837.2018.02.028. WANG Bo, LI juanjuan, LI Xiuxia, et al. Study on hearing change of 4 crew members in 180 day controlled ecological health insurance integrated test [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 289-294. doi:10.16289/j.cnki.1002-0837.2018.02.028.
[5] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects[J]. J Appl Physiol(1985),2002,92(4):1367-1377. doi:10.1152/japplphysiol.00969.2001.
[6] 吴玮,韩浩伦,王鸿南,等.模拟失重条件下飞船内噪声对豚鼠耳蜗形态与功能的影响[J].中华耳科学杂志,2010,8(1):95-99. doi:10.3969/j.issn.1672-2922.2010.01.020. WU Wei, HAN Haolun, WANG hongnan, et al. Changes in cochlear ultrastructure and hearing in guinea pigs in response to simulated weightlessness and space craft noise [J]. Chinese Journal of Otology, 2010,8(1): 95-99. doi:10.3969/j.issn.1672-2922.2010.01.020.
[7] 周莹,吴玮,韩浩伦,等.模拟飞船舱内中长期失重及噪声复合因素对大鼠听器官的影响[J].中国耳鼻咽喉头颈外科,2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004. ZHOU Ying, WU Wei, HAN Haolun, et al. Effects of simulated noise-weightlessness combined factors in spaceship on auditory function of rats after a medium-long term[J]. Chin Arch Otolaryngol Head Neck Surg, 2016,23(7):381-384. doi:10.16066/j.1672-7002.2016.07.004.
[8] Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hearing Res, 2017, 352:12-22. doi:10.1016/j.heares.2016.10.015.
[9] Darvishi E, Golmohammadi R, Faradmal J, et al. Psychophysiological responses to medium levels of occupational noise: an exposure–response relationships[J]. Acoust Aust, 2019,47(3):217-228. doi:10.1007/s40857-019-00159-0.
[10] Liu XP, Li L, Chen GD, et al. How low must you go? Effects of low-level noise on cochlear neural response[J]. Hearing Res, 2020, 392:107980. doi:10.1016/j.heares.2020.107980.
[11] Feng S, Yang L, Hui L, et al. Long-term exposure to low-intensity environmental noise aggravates age-related hearing loss via disruption of cochlear ribbon synapses[J]. Am J Transl Res, 2020, 12(7):3674-3687. PMID: 32774726.
[12] 宋峰, 甘彬, 许安廷, 等. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204. SONG Feng, GAN Bin, XU Anting, et al. Long-term low intensity noise exposure reduce the number of ribbon synapses in guinea pigs [J]. Journal of Otolaryngology and Ophthalmology of Shandong University,2017, 31(5):41-44. doi:10.6040/j.issn.1673-3770.0.2017.204.
[13] Shi L, Chang Y, Li X, et al. Cochlear synaptopathy and noise-induced hidden hearing loss[J]. Neural Plast, 2016, 2016:6143164-6143169. doi:10.1155/2016/6143164.
[14] 王顶, 马秀岚. 噪声性耳聋机制的研究进展[J]. 中华耳科学杂志, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019. WANG Ding, MA Xiulan. Research advances on mechanisms of noise-induced hearing loss[J]. Chinese Journal of Otology, 2017,15(3):376-379. doi:10.3969/j.issn.1672-2922.2017.03.019.
[15] 徐昂, 刘亭彦, 韩锋产. 自噬与内耳发育及听觉功能的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 32(2):123-125. doi:10.6040/j.issn.1673-3770.0.2018.398. XU Aang, LIU Tingyan, HAN Fengchan. Progress of research on autophagy, inner ear development, and auditory function[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 32(2): 123-125. doi:10.6040/j.issn.1673-3770.0.2018.398.
[16] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss[J]. J Neurosci. 2009, 29(45):14077-14085. doi:10.1523/JNEUROSCI.2845-09.2009.
[17] Liberman MC. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration [J]. Adv Exp Med Biol. 2016, 875: 1-7. doi:10.1007/978-1-4939-2981-8_1.
[18] Valero M, Burton J A, Hauser S N, et al. Noise-induced cochlear synaptopathy in rhesus monkeys(Macaca mulatta)[J]. Hearing Res, 2017, 353: 213-223. doi:10.1016/j.heares.2017.07.003.
[19] Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiologica, 2020, 228(3):e13434,n/a. doi:10.1111/apha.13434.
[20] Marshall-Goebel K, Damani R, Bershad EM. Brain physiological response and adaptation during spaceflight. Neurosurgery, 2019, 85(5): E815-821.
[21] 张驰,吴玮,韩浩伦,等.模拟航天环境对大鼠内耳淋巴液容积的影响[J].中华耳科学杂志,2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030. ZHANG Chi, WU Wei, HAN Haolun, et al. Effects of simulated spacecraft environment on rat auditory system and inner ear lymphatic fluid volume[J]. Chinese Journal of Otology, 2016,14(2):278-281. doi: 10.3969/j.issn.1672-2922.2016.02.030.
[22] Hughson RL, Helm A, Durante M. Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol, 2018,15(3):167-180. doi:10.1038/nrcardio.2017.157.
[23] 詹皓. 航天失重环境中机体的氧化应激损伤与防护措施研究进展[J]. 中华航空航天医学杂志, 2015, 26(4):296-302. doi: 10.3760/cma.j.issn.1007-6239.2015.04.016. ZHAN Hao. Advances on space weightlessness induced oxidative stress injury and the protective measures[J]. Chinese Journal of Aerospace Medicine, 2015, 26(4):296-302. doi:10.3760/cma.j.issn.1007-6239.2015.04.016.
[24] 李英贤, 凌树宽, 赵亚丽,等. 航天医学问题的细胞分子基础研究进展[J]. 航天医学与医学工程, 2018, 31(2):140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008. LI Yingxian, LING Shukuan, ZHAO Yali, et al. Research progress on cellular and molecular basis of aerospace medicine [J]. Aerospace Medicine and Medical Engineering, 2018, 31(2): 140-151. doi:10.16289/j.cnki.1002-0837.2018.02.008.
[25] 李兴启. 听觉诱发反应及应用[M]. 北京:人民军医出版社, 2007.
[26] Lobarinas E, Salvi R, D Ding. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss[J]. Jaro-J Assoc Res Oto, 2016, 17(2): 89-101. doi:10.1007/s10162-015-0550-8.
[27] Colleen G, Le P. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature[J]. Int J Audiol, 2019, 58(Supp1):S3-S32. doi:10.1080/14992027.2018.1534010.
[1] 段新艳,宋忠义,王宁,訾希存, 潘新良. DPOAE与高刺激率ABR在听力正常耳鸣患者中的应用价值[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 6-10.
[2] 倪坤, 孙世冰, 李晓艳. 1 000 Hz声导抗在高危新生儿听力筛查中的应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 43-47.
[3] 陈伟,胡中南,童钊君,李湘宇,刘文君. 青中年无眩晕、心脑血管疾病病史的突发性聋患者高刺激率听性脑干反应特征分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 45-49.
[4] 宋峰,甘彬,许安廷,王坚. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 41-44.
[5] 刘志奇1,2,刘立思1,杨琨3 . 新生儿听力筛查11894例结果分析[J]. 山东大学耳鼻喉眼学报, 2013, 27(2): 8-12.
[6] 曹效平,王天生,顾东胜,黄爱萍. 正常听力耳鸣患者听尼特TM检测及高刺激率听觉脑干反应结果及分析[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 6-9.
[7] 鄢慧琴,王海涛,周枫,黄利芬 . 正常豚鼠听性脑干反应与听性稳态反应的对比[J]. 山东大学耳鼻喉眼学报, 2011, 25(3): 43-45.
[8] 余崇仙,杨克林,张晓敏,汪平. 3~4月龄及5~6月龄婴儿听性脑干反应的正常值分析[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 17-20.
[9] 周彬1,徐平1,李艳1,马肖男1,吴硕1,夏红2. JNK抑制剂CEP-1347对噪声损伤耳蜗的保护作用及意义[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 25-28.
[10] 高 下,Fleischer Grald,丁小琼, 张 倩 . 高原低氧环境下鞭炮噪声对正常发育儿童听觉的影响[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 24-27 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[2] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[3] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[4] 徐赛男,杨雷 . 红霉素促进鼻息肉上皮细胞凋亡的实验研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 27 -29 .
[5] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[6] 刘联合 . 颈深部脓肿37例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 180 -181 .
[7] 谢治年 ,姬长友 . RNA干扰及其在喉鳞癌研究中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 200 -203 .
[8] 乔 艺,倪关森,陈文文 . 改良悬雍垂腭咽成形术联合鼻腔手术治疗阻塞性睡眠呼吸暂停综合征38例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 206 -208 .
[9] 汪晓锋,林 昶,程金妹 . 不同龄小鼠内耳中ABAD的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 207 -211 .
[10] 凡启军,黄治物,梅 玲,肖伯奎 . 荧光定量PCR测定水杨酸钠作用后大鼠耳蜗基因的表达[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 212 -214 .