山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 157-162.doi: 10.6040/j.issn.1673-3770.0.2021.141

• • 上一篇    下一篇

OCT及OCTA在阿尔茨海默病诊断中的研究进展

张敏1,李艳2   

  1. 1. 潍坊医学院 临床医学院, 山东 潍坊 261053;
    2. 潍坊医学院附属医院 眼科中心, 山东 潍坊 261031
  • 发布日期:2022-04-15
  • 通讯作者: 李艳. E-mail:liyanmails@126.com
  • 基金资助:
    山东省医药卫生科技发展计划项目(2019WS604,202007020323)

Research progress of optical coherence tomography and angiography in the diagnosis of Alzheimer's disease

ZHANG Min1,LI Yan2   

  1. 1. School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
    2. Ophthalmology Center, the Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
  • Published:2022-04-15

摘要: 阿尔茨海默病是一种进行性且不可逆转的神经系统疾病,由于视网膜和中枢神经系统有相似的胚胎起源和生理特征,眼科检查可提供简单无创的诊断方法。光学相干断层扫描技术(OCT)能够精确地测量视网膜各个组织层面的厚度,以评估视网膜的退行性改变,光学相干断层扫描血管成像(OCTA)可以提供高分辨率三维成像,从而更直观地检测视网膜血管的变化,间接地反映脑神经元和血管的病理特征。就OCT测量视网膜厚度及OCTA测量视网膜血流变化在阿尔茨海默病诊断中的研究进展进行综述。

关键词: 光学相干断层扫描, 血管成像, 阿尔茨海默病, 视网膜厚度, 血管密度

Abstract: Alzheimer's disease(AD)is a progressive and irreversible neurological disease characterized by changes in neurons and blood vessels of the brain. Its etiology is unknown, and there is no feasible non-invasive technique for early diagnosis. Because the retina and the central nervous system have similar embryonic origins and physiological characteristics, an ophthalmic examination may provide a simple and non-invasive diagnostic method. Optical coherence tomography(OCT)can accurately measure the thickness of various tissue layers of the retina to assess degenerative changes of the retina. Optical coherence tomography angiography(OCTA)can provide high-resolution three-dimensional imaging, which can more directly detect the changes in retinal vessels and reflect the pathological characteristics of brain neurons and blood vessels noninvasively. This article mainly reviews the research progress of retinal thickness measured by means of OCT and retinal blood flow measured using OCTA in the diagnosis of AD.

Key words: Optical coherence tomography, Angiography, Alzheimer's disease, Retinal thickness, Vessel density

中图分类号: 

  • R741.02
[1] Viña J, Sanz-Ros J. Alzheimer's disease: Only prevention makes sense[J]. Eur J Clin Invest, 2018, 48(10): e13005. doi:10.1111/eci.13005.
[2] Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J]. Redox Biol, 2018, 14:450-464. doi:10.1016/j.redox.2017.10.014.
[3] Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers Dement, 2013, 9(1): 63-75.e2. doi:10.1016/j.jalz.2012.11.007.
[4] Saint-Aubert L, Barbeau EJ, Péran P, et al. Cortical florbetapir-PET amyloid load in prodromal Alzheimer's disease patients[J]. EJNMMI Res, 2013, 3(1): 43. doi:10.1186/2191-219x-3-43.
[5] Johnson KA, Fox NC, Sperling RA, et al. Brain imaging in Alzheimer disease[J]. Cold Spring Harb Perspect Med, 2012, 2(4): a006213. doi:10.1101/cshperspect.a006213.
[6] Thal LJ, Kantarci K, Reiman EM, et al. The role of biomarkers in clinical trials for Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 2006, 20(1): 6-15. doi:10.1097/01.wad.0000191420.61260.a8.
[7] 秦熙, 卢艳. 阿尔茨海默病患者视网膜结构及功能的改变[J]. 国际眼科杂志, 2017, 17(10): 1867-1870. doi:10.3980/j.issn.1672-5123.2017.10.16. QIN Xi, LU Yan. Changes in retinal structure and function of Alzheimer's patients[J]. Int Eye Sci, 2017, 17(10): 1867-1870. doi:10.3980/j.issn.1672-5123.2017.10.16.
[8] Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model[J]. Neuroimage, 2011, 54(Suppl 1): S204-S217. doi:10.1016/j.neuroimage.2010.06.020.
[9] Risacher SL, WuDunn D, Tallman EF, et al. Visual contrast sensitivity is associated with the presence of cerebral amyloid and tau deposition[J]. Brain Commun, 2020, 2(1): fcaa019. doi:10.1093/braincomms/fcaa019.
[10] London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders[J]. Nat Rev Neurol, 2013, 9(1): 44-53. doi:10.1038/nrneurol.2012.227.
[11] Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma[J]. Am J Ophthalmol, 2004, 137(1): 156-169. doi:10.1016/s0002-9394(03)00792-x.
[12] 梁倩倩, 杨庭骅, 赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019,33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364 LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019,33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364
[13] 王露萍, 黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020,34(4): 23-27. doi:10.6040/j.issn.1673-3770.1.2020.059. WANG Luping, HUANG Yingxiang, WANG Yanling. Recent ocular ischemic syndrome advances[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020,34(4): 23-27. doi:10.6040/j.issn.1673-3770.1.2020.059.
[14] Wu SZ, Masurkar AV, Balcer LJ. Afferent and efferent visual markers of Alzheimer' s disease: a review and update in early stage disease[J]. Front Aging Neurosci, 2020, 12: 572337. doi:10.3389/fnagi.2020.572337.
[15] Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment[J]. Lancet, 2006, 367(9518): 1262-1270. doi:10.1016/S0140-6736(06)68542-5.
[16] Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 280-292. doi:10.1016/j.jalz.2011.03.003.
[17] Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century[J]. Sci Transl Med, 2011, 3(77): 77sr1. doi:10.1126/scitranslmed.3002369.
[18] Lane CA, Hardy J, Schott JM. Alzheimer's disease[J]. Eur J Neurol, 2018, 25(1): 59-70. doi:10.1111/ene.13439.
[19] Tan J, Yang Y, Jiang H, et al. The measurement repeatability using different partition methods of intraretinal tomographic thickness maps in healthy human subjects[J]. Clin Ophthalmol, 2016, 10: 2403-2415. doi:10.2147/opth.s117494.
[20] Jiang H, Liu Y, Wei Y, et al. Impaired retinal microcirculation in patients with Alzheimer's disease[J]. PLoS One, 2018, 13(2): e0192154. doi:10.1371/journal.pone.0192154.
[21] Shao Y, Jiang H, Wei Y, et al. Visualization of focal thinning of the ganglion cell-inner plexiform layer in patients with mild cognitive impairment and Alzheimer' s disease[J]. J Alzheimers Dis, 2018, 64(4): 1261-1273. doi:10.3233/jad-180070.
[22] Cheung CYL, Ong YT, Hilal S, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease[J]. J Alzheimer's Dis, 2015, 45(1): 45-56. doi:10.3233/JAD-141659.
[23] Polo V, Rodrigo MJ, Garcia-Martin E, et al. Visual dysfunction and its correlation with retinal changes in patients with Alzheimer' s disease[J]. Eye(Lond), 2017, 31(7): 1034-1041. doi:10.1038/eye.2017.23.
[24] Lad EM, Mukherjee D, Stinnett SS, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease[J]. PLoS One, 2018, 13(2): e0192646. doi:10.1371/journal.pone.0192646.
[25] Uchida A, Pillai JA, Bermel R, et al. Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer's and Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2768-2777. doi:10.1167/iovs.17-23240.
[26] Thomson KL, Yeo JM, Waddell B, et al. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography[J]. Alzheimers Dement(Amst), 2015, 1(2): 136-143. doi:10.1016/j.dadm.2015.03.001.
[27] Paquet C, Boissonnot M, Roger F, et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease[J]. Neurosci Lett, 2007, 420(2): 97-99. doi:10.1016/j.neulet.2007.02.090.
[28] Ferrari L, Huang SC, Magnani G, et al. Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer's disease[J]. J Alzheimers Dis, 2017, 56(3): 1101-1107. doi:10.3233/jad-160886.
[29] Cunha JP, Proença R, Dias-Santos A, et al. OCT in Alzheimer's disease: thinning of the RNFL and superior hemiretina[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1827-1835. doi:10.1007/s00417-017-3715-9.
[30] Sánchez D, Castilla-Marti M, Rodríguez-Gómez O, et al. Usefulness of peripapillary nerve fiber layer thickness assessed by optical coherence tomography as a biomarker for Alzheimer's disease[J]. Sci Rep, 2018, 8(1): 16345. doi:10.1038/s41598-018-34577-3.
[31] Zhang YS, Onishi AC, Zhou N, et al. Characterization of inner retinal hyperreflective alterations in early cognitive impairment on adaptive optics scanning laser ophthalmoscopy[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3527-3536. doi:10.1167/iovs.19-27135.
[32] Trebbastoni A, Marcelli M, Mallone F, et al. Attenuation of choroidal thickness in patients with Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 2017, 31(2): 128-134. doi:10.1097/wad.0000000000000176.
[33] Chan VTT, Sun Z, Tang S, et al. Spectral-domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis[J]. Ophthalmology, 2019, 126(4): 497-510. doi:10.1016/j.ophtha.2018.08.009.
[34] O' Bryhim BE, Apte RS, Kung N, et al. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings[J]. JAMA Ophthalmol, 2018, 136(11): 1242-1248. doi:10.1001/jamaophthalmol.2018.3556.
[35] Lahme L, Esser EL, Mihailovic N, et al. Evaluation of ocular perfusion in Alzheimer's disease using optical coherence tomography angiography[J]. J Alzheimers Dis, 2018, 66(4): 1745-1752. doi:10.3233/jad-180738.
[36] van de Kreeke JA, Nguyen HT, Konijnenberg E, et al. Optical coherence tomography angiography in preclinical Alzheimer's disease[J]. Br J Ophthalmol, 2020, 104(2): 157-161. doi:10.1136/bjophthalmol-2019-314127.
[37] Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J]. Sci Rep, 2017, 7: 42201. doi:10.1038/srep42201.
[38] Wu J, Zhang XJ, Azhati G, et al. Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography[J]. Acta Ophthalmol, 2020, 98(6): e781-e787. doi:10.1111/aos.14381.
[39] Jiang H, Wei Y, Shi Y, et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease[J]. J Neuroophthalmol, 2018, 38(3): 292-298. doi:10.1097/wno.0000000000000580.
[40] Chua J, Hu Q, Ke M, et al. Retinal microvasculature dysfunction is associated with Alzheimer's disease and mild cognitive impairment[J]. Alzheimers Res Ther, 2020, 12(1): 161. doi:10.1186/s13195-020-00724-0.
[41] Cheung CYL, Ong YT, Ikram MK, et al. Microvascular network alterations in the Retina of patients with Alzheimer's disease[J]. Alzheimer's Dement, 2014, 10(2): 135-142. doi:10.1016/j.jalz.2013.06.009.
[42] Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration[J]. Neuropathol Appl Neurobiol, 2011, 37(1): 56-74. doi:10.1111/j.1365-2990.2010.01139.x.
[43] Cheung N, Mosley T, Islam A, et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study[J]. Brain, 2010, 133(pt 7): 1987-1993. doi:10.1093/brain/awq127.
[44] Zhang Z, Huang X, Meng X, et al. In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography[J]. Sci Rep, 2017, 7(1): 8936. doi:10.1038/s41598-017-08174-9.
[45] Zabel P, Kaluzny JJ, Wilkosc-Debczynska M, et al. Comparison of retinal microvasculature in patients with Alzheimer's disease and primary open-angle glaucoma by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3447. doi:10.1167/iovs.19-27028.
[46] Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer's disease and mild cognitive impairment[J]. Sci Rep, 2019, 9: 63. doi:10.1038/s41598-018-37271-6.
[47] Yoon SP, Grewal DS, Thompson AC, et al. Retinal microvascular and neurodegenerative changes in Alzheimer's disease and mild cognitive impairment compared with control participants[J]. Ophthalmol Retina, 2019, 3(6): 489-499. doi:10.1016/j.oret.2019.02.002.
[48] Zhang YS, Zhou NN, Knoll BM, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer's Disease on optical coherence tomography angiography[J]. PLoS One, 2019, 14(4): e0214685. doi:10.1371/journal.pone.0214685.
[49] Bulut M, Kurtulu??塂F, Gözkaya 0, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia[J]. Br J Ophthalmol, 2018, 102(2): 233-237. doi:10.1136/bjophthalmol-2017-310476.
[50] Melo SCD, Champs APS, Goulart RF, et al. Dementias in Brazil: increasing burden in the 2000-2016 period. Estimates from the Global Burden of Disease Study 2016[J]. Arquivos De Neuro - Psiquiatria, 2020, 78(12): 762-771. doi:10.1590/0004-282X20200059.
[1] 唐翡然,孔香云申家泉. 相干光层析血管成像术测量视盘旁浅层血管密度在青光眼诊疗中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 77-82.
[2] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[3] 张昕雨雷春燕,张美霞. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136.
[4] 吴迪盼盼,崔新华,郭颖,耿博,高芳芳,梁辉. 窄带成像技术在咽喉反流诊断中的优势应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 31-36.
[5] 黄映湘, 王艳玲. 正确判读眼缺血综合征预警信号,提高诊断水平[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 1-4.
[6] 王露萍黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27.
[7] 傅强,王红星. 眼缺血综合征患者脉络膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 60-63.
[8] 冯雪,王海伟,李闻思,杨新同,孙存,赵媛,赵朋波,张建强. 基于SD-OCT分析高血压类型与视网膜血管管径的关系[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 64-68.
[9] 徐婧,瞿远珍,梁小芳,杨柳,汤洋. 视神经脊髓炎谱系疾病患者黄斑区及视盘周围视网膜血管参数变化特征[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 69-74.
[10] 张晶,陶冶,李福生,王燊,曲冬懿,李莹,周跃华. OCT导航的飞秒激光制作角膜瓣的优势分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 17-21.
[11] 梁刚,马蓉,张丰菊. SMILE术中角膜帽下地塞米松平衡液冲洗与否的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 22-31.
[12] 李锐,李勇,谢洪涛,岳章显,刘钊臣,袁慧敏. 眼压波动对人工晶体植入术患者眼底黄斑及视盘血流密度的影响分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 89-92.
[13] 梁倩倩,杨庭骅,赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142.
[14] 焦芮,韩克阳,王淑雅, 赵博军. 光学相干断层扫描技术在非动脉炎性前部缺血性视神经病变中的诊断现状[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 119-122.
[15] 邢凯,亢泽峰. 玻璃体腔内注射康柏西普治疗视网膜分支静脉阻塞继发黄斑水肿的疗效分析[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 80-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[2] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[3] 隆梅辉,何明强,牟艳云,田利健 . 上颌窦炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 329 -330 .
[4] 邹 俊,卢 奕,褚仁远 . 体外培养人胚晶状体上皮细胞生长特性的研究[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 453 -456 .
[5] 夏文清,郑 敏,满晓飞,李建平 . 手法劈核治疗老年性白内障[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 467 -469 .
[6] 李学昌,王金磊,张玉莉,董文汇,韩在文 . 中药冲洗对鼻黏膜纤毛超微结构的影响[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 522 -524 .
[7] 康宏建,李晓红,王保安,周 涛 . 重型颅脑损伤患者行气管切开术的意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 234 -236 .
[8] 闫 蕊,朱淋洁 . 翼状胬肉显微手术切除后角膜干细胞移植[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 243 -244 .
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388 -392 .
[10] 徐豪杰,李学忠,陈成芳,王学海 . 鼻内镜下鼻腔泪囊吻合术17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 132 -134 .