山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (1): 132-139.doi: 10.6040/j.issn.1673-3770.0.2021.482
• 综述 • 上一篇
王安洋1,2,李超友2,薛刚2,吴靖芳1
WANG Anyang1,2, LI Chaoyou2, XUE Gang2, WU Jingfang1
摘要: 肠道菌群是定植于人体胃肠道内的庞大微生物群,其稳态受损会导致肠上皮屏障功能障碍,引发肠道及全身疾病。研究揭示了甲状腺疾病患者与健康人肠道微生物群组成的差异以及肠道菌群对甲状腺激素代谢、对甲状腺功能的影响、与甲状腺疾病(桥本甲状腺炎,格雷夫斯病以及甲状腺癌)发生的可能关系。探究肠道菌群在甲状腺疾病中作用机制及治疗前景。
中图分类号:
[1] Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab, 2019, 30(8): 479-490. doi:10.1016/j.tem.2019.05.008 [2] 宋影春, 郁霞青, 李丹. 乳头状甲状腺癌术后功能减低患者肠道微生物群落的结构性变化[J]. 同济大学学报(医学版), 2019, 40(2): 144-151. doi:10.16118/j.1008-0392.2019.02.003 SONG Yingchun, YU Xiaqing, LI Dan. Structural changes of gut microbiota in papillary thyroid carcinoma patients with postoperative hypothyroidism[J]. Journal of Tongji University(Medical Science), 2019, 40(2): 144-151. doi:10.16118/j.1008-0392.2019.02.003 [3] Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease[J]. Eur J Immunol, 2018, 48(4): 564-575. doi:10.1002/eji.201646879 [4] Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship[J]. Pediatr Nephrol, 2017, 32(6): 921-931. doi:10.1007/s00467-016-3392-7 [5] Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer's disease[J]. J Neuroinflammation, 2019, 16(1): 108. doi:10.1186/s12974-019-1494-4 [6] Su XH, Zhao Y, Li Y, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis[J]. Clin Sci(Lond), 2020, 134(12): 1521-1535. doi:10.1042/CS20200475 [7] Knezevic J, Starchl C, Tmava Berisha A, et al. Thyroid-gut-axis: how does the microbiota influence thyroid function? [J]. Nutrients, 2020, 12(6): E1769. doi:10.3390/nu12061769 [8] Docimo G, Cangiano A, Romano RM, et al. The human microbiota in endocrinology: implications for pathophysiology, treatment, and prognosis in thyroid diseases[J]. Front Endocrinol(Lausanne), 2020, 11: 586529. doi:10.3389/fendo.2020.586529 [9] Samimi H, Haghpanah V. Gut microbiome and radioiodine-refractory papillary thyroid carcinoma pathophysiology[J]. Trends Endocrinol Metab, 2020, 31(9): 627-630. doi:10.1016/j.tem.2020.03.005 [10] 余今菁, 李欢, 胡邱宇, 等. 基于高通量测序技术的溃疡性结肠炎患者肠道菌群多样性研究[J]. 华中科技大学学报(医学版), 2018, 47(4): 460-465. doi:10.3870/j.issn.1672-0741.2018.04.015 YU Jinjing, LI Huan, HU Qiuyu, et al. Research on gut microbiota diversity in patients with ulcerative colitis by high-throughput sequencing[J]. Current Medical Science, 2018, 47(4): 460-465. doi:10.3870/j.issn.1672-0741.2018.04.015 [11] Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nat Med, 2016, 22(10): 1079-1089. doi:10.1038/nm.4185 [12] Knezevic J, Starchl C, Tmava Berisha A, et al. Thyroid-gut-axis: how does the microbiota influence thyroid function? [J]. Nutrients, 2020, 12(6): E1769. doi:10.3390/nu12061769 [13] Virili C, Centanni M. “With a little help from my friends” - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling[J]. Mol Cell Endocrinol, 2017, 458: 39-43. doi:10.1016/j.mce.2017.01.053 [14] El-Zawawy HT, Ahmed SM, El-Attar EA, et al. Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases[J]. Int J Clin Pract, 2021, 75(5): e14038. doi:10.1111/ijcp.14038 [15] Liu SM, An YX, Cao B, et al. The composition of gut microbiota in patients bearing hashimoto's thyroiditis with euthyroidism and hypothyroidism[J]. Int J Endocrinol, 2020, 2020: 5036959. doi:10.1155/2020/5036959 [16] Zhou L, Li XL, Ahmed A, et al. Gut microbe analysis between hyperthyroid and healthy individuals[J]. Curr Microbiol, 2014, 69(5): 675-680. doi:10.1007/s00284-014-0640-6 [17] Feng J, Zhao FY, Sun JY, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients[J]. Int J Cancer, 2019, 144(11): 2728-2745. doi:10.1002/ijc.32007 [18] Yu XQ, Jiang W, Kosik RO, et al. Gut microbiota changes and its potential relations with thyroid carcinoma[J]. J Adv Res, 2021, 35: 61-70. doi:10.1016/j.jare.2021.04.001 [19] Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin[J]. Antimicrob Agents Chemother, 2012, 56(11): 5811-5820. doi:10.1128/AAC.00789-12 [20] 李小雅, 谭周进. 中医药调节肠道微生态研究技术进展[J]. 世界华人消化杂志, 2021, 29(9): 479-487. LI Xiaoya, TAN Zhoujin. Advances in research technology of regulation of intestinal microecology by traditional Chinese medicine[J]. World Chinese Journal of Digestology, 2021, 29(9): 479-487. [21] Tolonen AC, Xavier RJ. Dissecting the human microbiome with single-cell genomics[J]. Genome Med, 2017, 9(1): 56. doi:10.1186/s13073-017-0448-7 [22] Aranda-Díaz A, Ng KM, Thomsen T, et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota[J]. Cell Host Microbe, 2022, 30(2): 260-272.e5. doi:10.1016/j.chom.2021.12.008 [23] 李波, 侍荣华, 李宗杰. 肠道菌群-肠-脑轴与心身疾病的相互关系[J]. 生理科学进展, 2018, 49(3): 221-226. LI Bo, SHI Ronghua, LI Zongjie. The correlations between microbiota-gut-brain axis and psychosomatic disorders[J]. Progress in Physiological Sciences, 2018, 49(3): 221-226. [24] Lerner A, Jeremias P, Matthias T. Gut-thyroid axis and celiac disease[J]. Endocr Connect, 2017, 6(4): R52-R58. doi:10.1530/EC-17-0021 [25] Martínez FG, Moreno-Martin G, Pescuma M, et al. Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids[J]. Front Bioeng Biotechnol, 2020, 8: 506. doi:10.3389/fbioe.2020.00506 [26] Talebi S, Karimifar M, Heidari Z, et al. The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: a randomized, doubleblind, placebocontrolled trial[J]. Complement Ther Med, 2020, 48: 102234. doi:10.1016/j.ctim.2019.102234 [27] Bargiel P, Szczuko M, Stachowska L, et al. Microbiome metabolites and thyroid dysfunction[J]. J Clin Med, 2021, 10(16): 3609. doi:10.3390/jcm10163609 [28] Cayres LCF, de Salis LVV, Rodrigues GSP, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis[J]. Front Immunol, 2021, 12: 579140. doi:10.3389/fimmu.2021.579140 [29] Khakisahneh S, Zhang XY, Nouri Z, et al. Cecal microbial transplantation attenuates hyperthyroid-induced thermogenesis in Mongolian gerbils[J]. Microb Biotechnol, 2022, 15(3): 817-831. doi:10.1111/1751-7915.13793 [30] Huo DX, Cen CP, Chang HB, et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves' disease patients through the gut-thyroid axis[J]. Commun Biol, 2021, 4(1): 1046. doi:10.1038/s42003-021-02587-z [31] Martínez FG, Moreno-Martin G, Pescuma M, et al. Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids[J]. Front Bioeng Biotechnol, 2020, 8: 506. doi:10.3389/fbioe.2020.00506 [32] Köhrle J. Selenium and the thyroid[J]. Curr Opin Endocrinol Diabetes Obes, 2013, 20(5): 441-448. doi:10.1097/01.med.0000433066.24541.88 [33] Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, et al. Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases[J]. Front Nutr, 2021, 8: 685317. doi:10.3389/fnut.2021.685317 [34] Lopez CA, Skaar EP. The impact of dietary transition metals on host-bacterial interactions[J]. Cell Host Microbe, 2018, 23(6): 737-748. doi:10.1016/j.chom.2018.05.008 [35] Kortman GA, Raffatellu M, Swinkels DW, et al. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective[J]. FEMS Microbiol Rev, 2014, 38(6): 1202-1234. doi:10.1111/1574-6976.12086 [36] Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab, 2019, 30(8): 479-490. doi:10.1016/j.tem.2019.05.008 [37] Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota[J]. FASEB J, 2011, 25(7): 2492-2499. doi:10.1096/fj.11-181990 [38] Su XH, Zhao Y, Li Y, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis[J]. Clin Sci(Lond), 2020, 134(12): 1521-1535. doi:10.1042/CS20200475 [39] Shin NR, Bose S, Wang JH, et al. Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models[J]. FASEB J, 2020, 34(6): 8686-8701. doi:10.1096/fj.201903091RR [40] Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Med, 2017, 9(1): 103. doi:10.1186/s13073-017-0490-5 [41] Bílek R, Dvo ráková M, Grimmichová T, et al. Iodine, thyroglobulin and thyroid gland[J]. Physiol Res, 2020, 69(Suppl 2): S225-S236. doi:10.33549/physiolres.934514 [42] Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product[J]. Appl Environ Microbiol, 2004, 70(10): 5810-5817. doi:10.1128/AEM.70.10.5810-5817.2004 [43] Zhao FY, Feng J, Li J, et al. Alterations of the gut microbiota in hashimoto's thyroiditis patients[J]. Thyroid, 2018, 28(2): 175-186. doi:10.1089/thy.2017.0395 [44] Jiang W, Yu XQ, Kosik RO, et al. Gut microbiota may play a significant role in the pathogenesis of Graves' disease[J]. Thyroid, 2021, 31(5): 810-820. doi:10.1089/thy.2020.0193 [45] Covelli D, Ludgate M. The thyroid, the eyes and the gut: a possible connection[J]. J Endocrinol Invest, 2017, 40(6): 567-576. doi:10.1007/s40618-016-0594-6 [46] Yan HX, An WC, Chen F, et al. Intestinal microbiota changes in Graves'disease: a prospective clinical study[J]. Biosci Rep, 2020, 40(9): BSR20191242. doi:10.1042/BSR20191242 [47] Chang SC, Lin SF, Chen ST, et al. Alterations of gut microbiota in patients with Graves' disease[J]. Front Cell Infect Microbiol, 2021, 11: 663131. doi:10.3389/fcimb.2021.663131 [48] Reyes-Díaz A, Mata-Haro V, Hernández J, et al. Milk fermented by specific Lactobacillus strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model[J]. Nutrients, 2018, 10(6): E691. doi:10.3390/nu10060691 [49] Liu SM, An YX, Cao B, et al. The composition of gut microbiota in patients bearing hashimoto's thyroiditis with euthyroidism and hypothyroidism[J]. Int J Endocrinol, 2020, 2020: 5036959. doi:10.1155/2020/5036959 [50] 黄艳芬, 刘湘红, 伍浩, 等. 肠黏膜屏障与肠道菌群的相互关系[J]. 中国微生态学杂志, 2019, 31(12): 1465-1469, 1474. doi:10.13381/j.cnki.cjm.201912021 HUANG Yanfen, LIU Xianghong, WU Hao, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chinese Journal of Microecology, 2019, 31(12): 1465-1469, 1474. doi:10.13381/j.cnki.cjm.201912021 [51] Kiseleva EP, Mikhailopulo KI, Sviridov OV, et al. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases[J]. Benef Microbes, 2011, 2(2): 139-154. doi:10.3920/BM2010.0011 [52] 耿仕涛, 卢昆, 张尊月, 等. 肠道菌群对肿瘤微环境调节的研究进展[J]. 肿瘤学杂志, 2020, 26(11): 946-952. doi:10.11735/j.issn.1671-170X.2020.11.B004 GENG Shitao, LU Kun, ZHANG Zunyue, et al. Progress on regulation of intestinal flora on tumor microenvironment[J]. Chinese Clinical Oncology, 2020, 26(11): 946-952. doi:10.11735/j.issn.1671-170X.2020.11.B004 [53] Zhang H, Sun LT. When human cells meet bacteria: precision medicine for cancers using the microbiota[J]. Am J Cancer Res, 2018, 8(7): 1157-1175. [54] Zhang JM, Zhang FH, Zhao CY, et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function[J]. Endocrine, 2019, 64(3): 564-574. doi:10.1007/s12020-018-1831-x [55] Feng J, Zhao FY, Sun JY, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients[J]. Int J Cancer, 2019, 144(11): 2728-2745. doi:10.1002/ijc.32007 [56] Yu XQ, Jiang W, Kosik RO, et al. Gut microbiota changes and its potential relations with thyroid carcinoma[J]. J Adv Res, 2021, 35: 61-70. doi:10.1016/j.jare.2021.04.001 [57] Zhang LX, Chen JY, Xu CY, et al. Effects of iodine-131 radiotherapy on Th17/Tc17 and Treg/Th17 cells of patients with differentiated thyroid carcinoma[J]. Exp Ther Med, 2018, 15(3): 2661-2666. doi:10.3892/etm.2017.5663 [58] McBrearty N, Arzumanyan A, Bichenkov E, et al. Short chain fatty acids delay the development of hepatocellular carcinoma in HBx transgenic mice[J]. Neoplasia, 2021, 23(5): 529-538. doi:10.1016/j.neo.2021.04.004 [59] Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10): 661-672. doi:10.1038/nrmicro3344 [60] Hashemi A, Villa CR, Comelli EM. Probiotics in early life: a preventative and treatment approach[J]. Food Funct, 2016, 7(4): 1752-1768. doi:10.1039/c5fo01148e [61] Schwartz DJ, Rebeck ON, Dantas G. Complex interactions between the microbiome and cancer immune therapy[J]. Crit Rev Clin Lab Sci, 2019, 56(8): 567-585. doi:10.1080/10408363.2019.1660303 [62] Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? [J]. Gut, 2020, 69(10): 1867-1876. doi:10.1136/gutjnl-2020-321153 [63] Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders[J]. J Neurogastroenterol Motil, 2021, 27(1): 19-34. doi:10.5056/jnm20149 [64] Taur Y, Coyte K, Schluter J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant[J]. Sci Transl Med, 2018, 10(460): eaap9489. doi:10.1126/scitranslmed.aap9489 [65] Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy[J]. J Exp Med, 2019, 216(1): 20-40. doi:10.1084/jem.20180448 [66] Routy B, le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. doi:10.1126/science.aan3706 [67] 斯伃恬, 应昊轩, 游丹铭. 肠道菌群在肿瘤免疫治疗中的新作用[J]. 重庆医学, 2020, 49(20): 3486-3490. doi:10.3969/j.issn.1671-8348.2020.20.038 SI Yutian, YING Haoxuan, YOU Danming. New roles of intestinal flora in tumor immunotherapy[J]. Chongqing Medicine, 2020, 49(20): 3486-3490. doi:10.3969/j.issn.1671-8348.2020.20.038 [68] Hills RD Jr, Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease[J]. Nutrients, 2019, 11(7): E1613. doi:10.3390/nu11071613 |
[1] | 张轶轶,薛刚,金春亭. 外泌体在甲状腺癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 131-135. |
[2] | 潘新良. 加强甲状腺结节及恶性肿瘤的规范治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 1-12. |
[3] | 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45. |
[4] | 邓迪,刘均,李林珂,王吉,刘吉峰,吕丹,王海洋,甘卫刚,王君,李波,陈飞. 皮瓣二期重建策略应用于气管非环周缺损修复重建[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 52-57. |
[5] | 房忠菊, 张永侠, 赵建东, 纵亮, 翟性友, 李新建, 彭新, 任楠, 陈立伟, 刘明波. 甲状腺癌颈清扫术后乳糜漏的综合治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 64-68. |
[6] | 倪烨钦,吴凡,荀延萍,赵盼,张仕蓉,周天晗,孙思涵,陆凯宁,罗定存. BRAFV600E突变比值在合并桥本甲状腺炎甲状腺乳头状癌中的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 75-80. |
[7] | 吕静荣,陈淳,马衍,谢晋. 儿童分化型甲状腺癌的临床特征及危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 88-94. |
[8] | 冯云,钟志明,陈国庆. 纳米碳在甲状腺乳头状癌隐匿性侧颈转移淋巴结清扫术中的临床应用价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 101-106. |
[9] | 马驰,郑桂彬,孙海清,吴国长,郭雅文,孔杨,宋西成,郑海涛. 加速康复外科理念应用于甲状腺癌手术100例[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 107-110. |
[10] | 王佳说,郭星,阎艾慧. 甲状腺乳头状癌颈淋巴结转移形成巨大囊性变的诊断总结[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 111-113. |
[11] | 高晓倩,姜震,耿琛琛,刘大昱,李荔. 术前超声评估分化型甲状腺癌颈部淋巴结转移[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 135-139. |
[12] | 邱杰,孙莎莎,孙彦. 美国癌症联合委员会第8版甲状腺癌TNM分期解读[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 5-8. |
[13] | 徐书杭, 李春睿, 刘超. 儿童甲状腺癌的规范化诊治[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 12-15. |
[14] | 普布次仁,刘吉峰,巴罗. 甲状腺癌与外周静脉血炎性相关指标[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 21-24. |
[15] | 孙国臣,孙彦,张虹,王保为. 儿童分化型甲状腺癌的临床特征及治疗体会[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 25-28. |
|