山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (2): 91-97.doi: 10.6040/j.issn.1673-3770.0.2022.187

• 论著 • 上一篇    

载siIKKβ脂质纳米粒的制备及其对巨噬细胞再极化的作用

初宝睿,曲毅   

  1. 山东大学齐鲁医院 老年医学科, 山东 济南 250012
  • 发布日期:2023-03-30
  • 通讯作者: 曲毅. E-mail:yiqucn@sdu.edu.cn

Preparation of siIKKβ loaded lipid nanoparticles and assessment of their effect on repolarization of macrophages

CHU Baorui, QU Yi   

  1. Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2023-03-30

摘要: 目的 构建负载siRNA-IKKβ的阳离子脂质纳米粒并探索其调节巨噬细胞再极化从而抑制脉络膜新生血管(CNV)的能力。 方法 使用薄膜分散法制备阳离子脂质纳米粒;通过琼脂糖凝胶电泳筛选最佳基因纳米粒负载比,使用透射电子显微镜和马尔文粒度仪对其进行表征;qRT-PCR检测M2型巨噬细胞中IKKβ及巨噬细胞极化表型相关分子mRNA的表达;Western Blotting检测M2型巨噬细胞内IKKβ蛋白的沉默情况;激光诱导建立小鼠CNV模型并给药;Western blotting检测给药后CNV病灶内巨噬细胞表型的变化;OCTA检测载基因纳米粒对CNV的治疗效果。 结果 成功制备负载siIKKβ的阳离子脂质纳米粒LNs-siIKKβ,最佳负载比下粒径为(133.3±0.62)nm,Zeta电位为(6.72±0.17)mV;在体外,LNs-siIKKβ抑制M2型巨噬细胞内IKKβ的表达,巨噬细胞产生由M2向M1表型转变的趋势;体内给药后,CNV病灶处巨噬细胞产生由M2向M1表型转变的趋势,且对CNV的生成具有一定的抑制作用;生物安全性良好。 结论 构建的负载siIKKβ阳离子脂质纳米粒能够在体外及体内CNV病灶处将M2再极化为M1并能抑制CNV的生成。

关键词: 阳离子脂质纳米粒, IκB激酶β, 巨噬细胞极化, 脉络膜新生血管

Abstract: Objective We aim to construct lipid nanoparticles loaded with siRNA targeting IKKβ and explore their ability to inhibit choroidal neovascularization(CNV)by repolarizing the macrophage phenotype. Methods Cationic lipid nanoparticles were prepared by thin film dispersion, and the optimal gene nanoparticle loading ratio was screened for by agarose gel electrophoresis. Particles were characterized using transmission electron microscopy and a Malvern particle sizer; Expression of IKKβmRNA and mRNAs encoding molecules associated with macrophage polarization phenotype in M2 cells was detected via qRT-PCR; Expression of IKKβprotein in M2 cells was detected by Western blotting. A laser-induced CNV model was established in mice and used to investigate treatment. Macrophage phenotypic molecular protein expression in CNV lesions after drug administration was detected by Western blotting. The therapeutic effect of gene loaded nanoparticles on CNV was detected by OCTA. Results LNs-siIKKβ were successfully prepared. Particle size was(133.3±0.62)nm, and zeta potential was(6.72±0.17)mV at the optimal loading ratio. In vitro, macrophages can be repolarized from M2 to M1 phenotype by suppressing IKKβ expression in M2-type macrophages using LNs-siIKKb. In vivo, after treatment, macrophages in CNV lesions tended to repolarize from M2 to M1 phenotype and CNV production was suppressed. Conclusion The constructed siIKKβ-loaded cationic lipid nanoparticles were able to repolarize macrophages from M2 to M1 in vitro and in CNV lesions in vivo, and inhibited the generation of CNV.

Key words: Cationic lipid nanoparticles, IKKβ, Macrophage polarization, Choroidal neovascularization

中图分类号: 

  • R774
[1] Deng YH, Qiao LF, Du MY, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy[J]. Genes Dis, 2022, 9(1): 62-79. doi:10.1016/j.gendis.2021.02.009
[2] Kaarniranta K, Blasiak J, Liton P, et al. Autophagy in age-related macular degeneration[J]. Autophagy, 2022: 1-13. doi:10.1080/15548627.2022.2069437
[3] Marneros AG. Role of inflammasome activation in neovascular age-related macular degeneration[J]. FEBS J, 2021. doi:10.1111/febs.16278
[4] Wolf AT, Harris A, Oddone F, et al. Disease progression pathways of wet AMD: opportunities for new target discovery[J]. Expert Opin Ther Targets, 2022, 26(1): 5-12. doi:10.1080/14728222.2022.2030706
[5] Hagbi-Levi S, Tiosano L, Rinsky B, et al. Anti-tumor necrosis factor alpha reduces the proangiogenic effects of activated macrophages derived from patients with age-related macular degeneration[J]. Mol Vis, 2021, 27: 622-631
[6] Laskin DL, Sunil VR, Gardner CR, et al. Macrophages and tissue injury: agents of defense or destruction? [J]. Annu Rev Pharmacol Toxicol, 2011, 51: 267-288. doi:10.1146/annurev.pharmtox.010909.105812
[7] 巩亚军, 赖坤贝, 李龙辉, 等. 尼古丁通过调节巨噬细胞极化加重实验性脉络膜新生血管的形成[J]. 中国病理生理杂志, 2020, 36(1): 104-111. doi:10.3969/j.issn.1000-4718.2020.01.015 GONG Yajun, LAI Kunbei, LI Longhui, et al. Nicotine aggravates experimental choroidal neovascularization by modulating macrophage polarization[J]. Chinese Journal of Pathophysiology, 2020, 36(1): 104-111. doi:10.3969/j.issn.1000-4718.2020.01.015
[8] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol, 2011, 11(11): 750-761. doi:10.1038/nri3088
[9] Hu YK, Wang Y, Chen TH, et al. Exosome: function and application in inflammatory bone diseases[J]. Oxid Med Cell Longev, 2021, 2021: 6324912. doi:10.1155/2021/6324912
[10] Jallad S, Goubet S, Symes A, et al. Prognostic value of inflammation or granuloma after intravesival BCG in non-muscle-invasive bladder cancer[J]. BJU Int, 2014, 113(5b): E22-E27. doi:10.1111/bju.12334
[11] Sil AK, Maeda S, Sano Y, et al. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis[J]. Nature, 2004, 428(6983): 660-664. doi:10.1038/nature02421
[12] Lan CY, Huang X, Lin SX, et al. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer[J]. Technol Cancer Res Treat, 2013, 12(3): 259-267. doi:10.7785/tcrt.2012.500312
[13] Weischenfeldt J, Porse B. Bone marrow-derived macrophages(BMM): isolation and applications[J]. CSH Protoc, 2008, 2008: pdb.prot5080. doi:10.1101/pdb.prot5080
[14] 王翠, 颜昕, 赵博军. IVR联合PDT治疗湿性年龄相关性黄斑变性的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 94-97. doi: 10.6040/j.issn.1673-3370.0.2016.227 WANG Cui, YAN Xin, ZHAO Bojun. Combination of intravitreal ranibizumab with photodynamic therapy in the treatment of wet age-related macular degeneration[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 94-97. doi: 10.6040/j.issn.1673-3370.0.2016.227
[15] Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. doi:10.1016/S0140-6736(18)31550-2
[16] Zhou YD, Yoshida S, Peng YQ, et al. Diverse roles of macrophages in intraocular neovascular diseases: a review[J]. Int J Ophthalmol, 2017, 10(12): 1902-1908. doi:10.18240/ijo.2017.12.18
[17] 张鹏飞, 孙晓东. 巨噬细胞极化与脉络膜新生血管形成的相关性研究现状与进展[J]. 中华眼底病杂志, 2016, 32(1): 96-99. doi:10.3760/cma.j.issn.1005-1015.2016.01.027 ZHANG Pengfei, SUN Xiaodong. The status and progress of relationship between macrophages polarization and choroidal neovascularization[J]. Chinese Journal of Ocular Fundus Diseases, 2016, 32(1): 96-99. doi:10.3760/cma.j.issn.1005-1015.2016.01.027
[18] Tsutsumi C, Sonoda KH, Egashira K, et al. The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization[J]. J Leukoc Biol, 2003, 74(1): 25-32. doi:10.1189/jlb.0902436
[19] Apte RS, Richter J, Herndon J, et al. Macrophages inhibit neovascularization in a murine model of age-related macular degeneration[J]. PLoS Med, 2006, 3(8): e310. doi:10.1371/journal.pmed.0030310
[20] Yang Y, Liu F, Tang M, et al. Macrophage polarization in experimental and clinical choroidal neovascularization[J]. Sci Rep, 2016, 6: 30933. doi:10.1038/srep30933
[21] Xu NN, Bo QY, Shao R, et al. Chitinase-3-like-1 promotes M2 macrophage differentiation and induces choroidal neovascularization in neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4596-4605. doi:10.1167/iovs.19-27493
[22] Zhang PF, Wang H, Luo XT, et al. microRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization[J]. Inflammation, 2018, 41(1): 143-153. doi:10.1007/s10753-017-0672-8
[23] Cheng Y, Cheng TJ, Qu Y. TIMP-3 suppression induces choroidal neovascularization by moderating the polarization of macrophages in age-related macular degeneration[J]. Mol Immunol, 2019, 106: 119-126. doi:10.1016/j.molimm.2018.12.026
[24] Xu Y, Cui KX, Li J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway[J]. J Pineal Res, 2020, 69(1): e12660. doi:10.1111/jpi.12660
[25] Zhang Q, Mao ZJ, Sun J. NF-κB inhibitor, BAY11-7082, suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-κB/Snail signaling in bladder cancer cells[J]. Gene, 2019, 710: 91-97. doi:10.1016/j.gene.2019.04.039
[26] Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity[J]. Cell, 1996, 84(6): 853-862. doi:10.1016/s0092-8674(00)81064-8
[27] Yu N, Liu H, Zhang YF, et al. Effects of brain IKKβ gene silencing by small interfering RNA on P-glycoprotein expression and brain damage in the rat kainic acid-induced seizure model[J]. CNS Neurol Disord Drug Targets, 2014, 13(4): 661-672. doi:10.2174/18715273113129990106
[28] Mendonça MCP, Kont A, Aburto MR, et al. Advances in the design of(nano)formulations for delivery of antisense oligonucleotides and small interfering RNA: focus on the central nervous system[J]. Mol Pharm, 2021, 18(4): 1491-1506. doi:10.1021/acs.molpharmaceut.0c01238
[29] Jia Z, Choi J, Park S. Surface charge density-dependent DNA capture through polymer planar nanopores[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40927-40937. doi:10.1021/acsami.8b14423
[30] Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, et al. Small interfering RNAs(siRNAs)in cancer therapy: a nano-based approach[J]. Int J Nanomedicine, 2019, 14: 3111-3128. doi:10.2147/IJN.S200253
[31] Xu QG, Boylan NJ, Suk JS, et al. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo[J]. J Control Release, 2013, 167(1): 76-84. doi:10.1016/j.jconrel.2013.01.018
[32] Meng T, Kulkarni V, Simmers R, et al. Therapeutic implications of nanomedicine for ocular drug delivery[J]. Drug Discov Today, 2019, 24(8): 1524-1538. doi:10.1016/j.drudis.2019.05.006
[33] Park JR, Choi W, Hong HK, et al. Imaging laser-induced choroidal neovascularization in the rodent retina using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT331-OCT340. doi:10.1167/iovs.15-18946
[1] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[2] 任雨馨,赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162.
[3] 张营春, 杜祥阁, 颜昕, 王翠, 赵博军. 尼古丁对人RPE细胞及HUVEC的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 74-80.
[4] 龚斌, 范传峰, 王玉. 抗VEGF药物(雷珠单抗)治疗不同病程湿性年龄相关性黄斑变性62例[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 58-61.
[5] 訾雨梦1,王玉2,范传峰2,舒湘汶2,吴昌龙2. 玻璃体腔注射治疗不同病程两组特发性脉络膜新生血管病变[J]. 山东大学耳鼻喉眼学报, 2014, 28(3): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!