山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (5): 145-152.doi: 10.6040/j.issn.1673-3770.0.2023.117

• 综述 • 上一篇    

铜配合物在抗肿瘤治疗中的研究进展

杨煜雲1,2,黄艳利1,3,李军政1,4   

  1. 1.贵州医科大学 临床医学院, 贵州 贵阳 550004;
    2.暨南大学附属广州红十字会医院 耳鼻咽喉头颈外科, 广东 广州 510220;
    3.湖北省仙桃市第一人民医院耳鼻咽喉科, 湖北 仙桃 433000;
    4.南方医科大学珠江医院 耳鼻咽喉头颈外科中心, 广东 广州 510280
  • 发布日期:2024-09-25
  • 通讯作者: 李军政. E-mail:jzli2002@163.com

Research progress of Copper complexes for antitumor therapy

YANG Yuyun1,2, HUANG Yanli1,3, LI Junzhen1,4   

  1. 1. Clinical Medical College of Guizhou Medical University, Guiyang 550004, Guizhou, China2. Department of Otorhinolaryngology & Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, Guangdong, China3. Department of Otolaryngology, The First People's Hospital of Xiantao City, Xiantao 433000, Hubei, China4. Department of Otorhinolaryngology & Head and Neck Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, Guangdong, China
  • Published:2024-09-25

摘要: 铜是人体必需元素之一,广泛参与着人体内各项生命活动,其稳态在原核细胞和真核细胞中受到严格调节,以确保有足够的铜用于蛋白质的生物合成,并抑制氧化应激的产生和毒性。铜已被公认为限制癌症发生发展的因素之一,因此,通过调节人体内铜含量从而影响肿瘤的发生发展已逐步成为肿瘤治疗的热点之一,其可分为通过含铜化合物或铜离子载体来增加肿瘤细胞中的铜浓度和通过铜络合剂将铜浓度降低至生理水平,从而达到抗肿瘤治疗。论文针对铜配合物在肿瘤治疗中的现状与进展作一简要概述,包括已知的作用机制、分子靶点,讨论相关的临床试验,对其前景进行展望。

关键词: 铜配合物, 抗肿瘤治疗, 铜死亡, 铜离子载体

Abstract: Copper is one of the essential elements required by the human body, being widely involved in various activities. Copper homeostasis is strictly regulated in prolcaryotic and eukaryotic cells to ensure sufficient copper availability for protein biosynthesis and the inhibition of oxidative stress and resulting toxicity. Copper is a limiting factor in the development and progression of cancer, including growth, angiogenesis and metastasis; Therefore, regulating tumor occurrence and development by varying the copper content in the human body has become a popular research topic in tumor treatment. The method adopted for this can be divided into those that increase the copper concentration in tumor cells by administering copper compounds or copper ionophores and those that reduce the copper concentration to physiological levele using copper complexing agents, thereby achieving antitumor therapy. In this paper, the current status and progress of copper complexes in tumor therapy are briefly reviewed, including the known mechanism of action and molecular targets, Furthermore, the related clinical trials are discussed, and the prospects for copper complexes in this field are outlined.

Key words: Copper complex, Antineoplaston, Copper death, Copper ion carrier

中图分类号: 

  • R73
[1] Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation[J]. Nat Chem Biol, 2008, 4(3): 176-185. doi:10.1038/nchembio.72
[2] Turski ML, Brady DC, Kim HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2012, 32(7): 1284-1295. doi:10.1128/MCB.05722-11
[3] Denoyer D, Clatworthy SAS, Cater MA. Copper complexes in cancer therapy[J]. Met Ions Life Sci, 2018, 18: /books/9783110470734/9783110470734-/books/9783110470734/9783110470022/9783110470734-022.xml. doi:10.1515/9783110470734-022
[4] Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019, 15(7): 681-689. doi:10.1038/s41589-019-0291-9
[5] Modica-Napolitano JS, Bharath LP, Hanlon AJ, et al. The anticancer agent elesclomol has direct effects on mitochondrial bioenergetic function in isolated mammalian mitochondria[J]. Biomolecules, 2019, 9(8): 298. doi: 10.3390/biom9080298
[6] Nagai M, Vo NH, Shin Ogawa L, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells[J]. Free Radic Biol Med, 2012, 52(10): 2142-2150. doi:10.1016/j.freeradbiomed.2012.03.017
[7] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. doi: 10.1126/science.abf0529
[8] Lee JH, Cho YS, Jung KH, et al. Genipin enhances the antitumor effect of elesclomol in A549 lung cancer cells by blocking uncoupling protein-2 and stimulating reactive oxygen species production[J]. Oncol Lett, 2020, 20(6): 374. doi: 10.3892/ol.2020.12237
[9] Soma S, Latimer AJ, Chun H, et al. Elesclomol restores mitochondrial function in genetic models of copper deficiency[J]. Proc Natl Acad Sci USA, 2018, 115(32): 8161-8166. doi:10.1073/pnas.1806296115
[10] Chen SJ, Sun LJ, Koya K, et al. Syntheses and antitumor activities of N'1, N'3-dialkyl-N'1, N'3-di-(alkylcarbonothioyl)malonohydrazide: the discovery of elesclomol[J]. Bioorg Med Chem Lett, 2013, 23(18): 5070-5076. doi:10.1016/j.bmcl.2013.07.032
[11] O'Day SJ, Eggermont AMM, Chiarion-Sileni V, et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma[J]. J Clin Oncol, 2013, 31(9): 1211-1218. doi:10.1200/JCO.2012.44.5585
[12] O'Day S, Gonzalez R, Lawson D, et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma[J]. J Clin Oncol, 2009, 27(32): 5452-5458. doi:10.1200/JCO.2008.17.1579
[13] Hedley D, Shamas-Din A, Chow S, et al. A phase I study of elesclomol sodium in patients with acute myeloid leukemia[J]. Leuk Lymphoma, 2016, 57(10): 2437-2440. doi:10.3109/10428194.2016.1138293
[14] Monk BJ, Kauderer JT, Moxley KM, et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: an NRG oncology/gynecologic oncology group study[J]. Gynecol Oncol, 2018, 151(3): 422-427. doi:10.1016/j.ygyno.2018.10.001
[15] Li YY, Yang J, Zhang QQ, et al. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma[J]. Oncogene, 2022, 41(27): 3539-3553. doi:10.1038/s41388-022-02364-0
[16] Buccarelli M, D'Alessandris QG, Matarrese P, et al. Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth[J]. J Exp Clin Cancer Res, 2021, 40(1): 228. doi:10.1186/s13046-021-02031-4
[17] Albayrak G, Korkmaz FD, Tozcu D, et al. The outcomes of an impaired powerhouse in KRAS mutant lung adenocarcinoma cells by Elesclomol[J]. J Cell Biochem, 2019, 120(6): 10564-10571. doi:10.1002/jcb.28342
[18] Li H, Wang J, Wu C, et al. The combination of disulfiram and copper for cancer treatment[J]. Drug Discov Today, 2020, 25(6): 1099-1108. doi: 10.1016/j.drudis.2020.04.003
[19] Wang NN, Wang LH, Li Y, et al. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors[J]. Exp Cell Res, 2018, 362(1): 72-82. doi:10.1016/j.yexcr.2017.11.004
[20] Yang Z, Guo F, Albers AE, et al. Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines[J]. Biomed Pharmacother, 2019, 113: 108727. doi:10.1016/j.biopha.2019.108727
[21] Li Y, Chen F, Chen J, et al. Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers(Basel), 2020, 12(1): 138. doi: 10.3390/cancers12010138
[22] Guo F, Yang Z, Kulbe H, et al. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation[J]. Biomed Pharmacother, 2019, 118: 109371. doi:10.1016/j.biopha.2019.109371
[23] Shukla S, Sauna ZE, Prasad R, et al. Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans[J]. Biochem Biophys Res Commun, 2004, 322(2): 520-525. doi:10.1016/j.bbrc.2004.07.151
[24] Cong J, Wang YY, Zhang X, et al. A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram[J]. Cancer Lett, 2017, 409: 9-19. doi:10.1016/j.canlet.2017.08.028
[25] Li Y, Wang LH, Zhang HT, et al. Disulfiram combined with copper inhibits metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways[J]. J Cell Mol Med, 2018, 22(1): 439-451. doi:10.1111/jcmm.13334
[26] Zhou BH, Guo L, Zhang B, et al. Disulfiram combined with copper induces immunosuppression via PD-L1 stabilization in hepatocellular carcinoma[J]. Am J Cancer Res, 2019, 9(11): 2442-2455
[27] Brewer GJ. The promise of copper lowering therapy with tetrathiomolybdate in the cure of cancer and in the treatment of inflammatory disease[J]. J Trace Elem Med Biol, 2014, 28(4): 372-378. doi:10.1016/j.jtemb.2014.07.015
[28] Tian Y, Fang TT, Yuan SM, et al. Tetrathiomolybdate inhibits the reaction of cisplatin with human copper chaperone Atox1[J]. Metallomics, 2018, 10(5): 745-750. doi:10.1039/c8mt00084k
[29] McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions[J]. Exp Cell Res, 1980, 130(1): 147-157. doi: 10.1016/0014-4827(80)90051-8
[30] Jiang YC, Huo ZY, Qi XL, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine(Lond), 2022, 17(5): 303-324. doi:10.2217/nnm-2021-0374
[31] Kim KK, Lange TS, Singh RK, et al. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C[J]. BMC Cancer, 2012, 12: 147. doi:10.1186/1471-2407-12-147
[32] Rieber M. Cancer pro-oxidant therapy through copper redox cycling: Repurposing disulfiram and tetrathiomolybdate[J]. Curr Pharm Des, 2020, 26(35): 4461-4466. doi:10.2174/1381612826666200628022113
[33] Zhang ML, Qiu HM, Mao LJ, et al. Ammonium tetrathiomolybdate triggers autophagy-dependent?NRF2?activation in vascular endothelial cells[J]. Cell Death Dis, 2022, 13(8): 733. doi:10.1038/s41419-022-05183-z
[34] Yang T, Zhang F. Targeting transcription factor Nrf2(nuclear factor erythroid 2-related factor 2)for the intervention of vascular cognitive impairment and dementia[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1): 97-116. doi: 10.1161/ATVBAHA.120.314804
[35] Glasauer A, Sena LA, Diebold LP, et al. Targeting SOD1 reduces experimental non-small-cell lung cancer[J]. J Clin Invest, 2014, 124(1): 117-128. doi:10.1172/JCI71714
[36] Ramchandani D, Berisa M, Tavarez DA, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis[J]. Nat Commun, 2021, 12(1): 7311. doi:10.1038/s41467-021-27559-z
[37] Liu YL, Bager CL, Willumsen N, et al. Tetrathiomolybdate(TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 108. doi:10.1038/s41523-021-00313-w
[38] Morisawa A, Okui T, Shimo T, et al. Ammonium tetrathiomolybdate enhances the antitumor effects of cetuximab via the suppression of osteoclastogenesis in head and neck squamous carcinoma[J]. Int J Oncol, 2018, 52(3): 989-999. doi:10.3892/ijo.2018.4242
[39] Ryumon S, Okui T, Kunisada Y, et al. Ammonium tetrathiomolybdate enhances the antitumor effect of cisplatin via the suppression of ATPase copper transporting beta in head and neck squamous cell carcinoma[J]. Oncol Rep, 2019, 42(6): 2611-2621. doi:10.3892/or.2019.7367
[40] Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, aβ elevation, and amyloid plaques in transgenic mice[J]. Science, 1996, 274(5284): 99-103. doi:10.1126/science.274.5284.99
[41] Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc Chelatoz markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice[J]. Neuron, 2001, 30(3): 665-676. doi:10.1016/S0896-6273(01)00317-8
[42] Du T, Filiz G, Caragounis A, et al. Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages[J]. J Pharmacol Exp Ther, 2008, 324(1): 360-367. doi:10.1124/jpet.107.130377
[43] Perez D, Simons PC, Smagley Y, et al. A High-Throughput Flow Cytometry Assay for Identification of Inhibitors of 3', 5'-Cyclic Adenosine Monophosphate Efflux[M] // High Throughput Screening. New York: Humana Press, 2016: 227-244.10.1007/978-1-4939-3673-1_15
[44] Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542. doi:10.1038/nrc.2017.53
[45] Chen D, Cui QC, Yang HJ, et al. Clioquinol, a therapeutic agent for Alzheimer's disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts[J]. Cancer Res, 2007, 67(4): 1636-1644. doi:10.1158/0008-5472.CAN-06-3546
[46] Mao X, Li X, Sprangers R, et al. Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma[J]. Leukemia, 2009, 23(3): 585-590. doi: 10.1038/leu.2008.232
[47] Arnesano F, Scintilla S, Calò V, et al. Copper-triggered aggregation of ubiquitin[J]. PLoS One, 2009, 4(9): e7052. doi:10.1371/journal.pone.0007052
[48] Ding WQ, Liu BL, Vaught JL, et al. Anticancer activity of the antibiotic clioquinol[J]. Cancer Res, 2005, 65(8): 3389-3395. doi:10.1158/0008-5472.CAN-04-3577
[49] Schimmer AD, Jitkova Y, Gronda M, et al. A phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies[J]. Clin Lymphoma Myeloma Leuk, 2012, 12(5): 330-336. doi: 10.1016/j.clml.2012.05.005
[1] 黄艳利,李军政. 铜诱导肿瘤细胞死亡机制及其在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 198-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!