山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (4): 55-61.doi: 10.6040/j.issn.1673-3770.0.2023.146

• 论著 • 上一篇    

基质金属蛋白酶及其抑制剂在喉鳞癌中的基因表达谱及临床病理特征相关性分析

倪荣生1,沈晓辉2,高下2   

  1. 1.南通大学附属南京江北医院 耳鼻咽喉头颈外科, 江苏 南京 210044;
    2.南京大学医学院附属鼓楼医院 耳鼻咽喉头颈外科, 江苏 南京 210008
  • 发布日期:2024-07-09
  • 通讯作者: 高下. E-mail:xiagaogao@hotmail.com

Correlation analysis of gene expression profile of matrix metalloproteinases and their inhibitors in laryngeal squamous cell carcinoma and clinicopathological features

NI Rongsheng1, SHEN Xiaohui2, GAO Xia2   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery, Nanjing Jiangbei Hospital Affiliated to Nantong University, Nanjing 210044, Jiangsu, China 2. Department of Otorhinolaryngology & Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
  • Published:2024-07-09

摘要: 目的 分析喉鳞状上皮细胞癌(laryngeal squamous cell carcinoma, LSCC)中基质金属蛋白酶(matrix metalloproteinase, MMPs)家族及组织金属蛋白酶抑制剂(tissue inhibitors of matrix metalloproteinases, TIMPs)的基因表达谱,找出与LSCC相关性最高的基因进行进一步研究,探讨其蛋白的表达与临床病理特征相关性。 方法 选取28例LSCC患者,采用含人类全基因组的基因芯片来检测MMPsTIMPs在4例LSCC患者中共同上调或下调的基因。采用逆转录聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)及western blot检测24例患者该基因和蛋白的表达来验证基因芯片结果,并研究该蛋白的表达与临床病理特征之间的关系。 结果 基因芯片显示MMPs家族在LSCC与癌旁正常细胞之间的差异表达基因有14个,其中4个基因仅表达上调,4个基因仅表达下调,另有6个基因在部分患者中表达上调,而在另一部分患者中表达下调。未发现在4例患者中共同表达上调或下调的基因。TIMPs在LSCC与癌旁正常细胞之间全部表达下调,TIMP4在4例患者中全部表达下调。RT-PCR检测结果显示TIMP4基因在LSCC组织中低表达。western blot检测结果显示TIMP4蛋白在LSCC组织中低表达,且TIMP4蛋白的表达与淋巴结转移相关。 结论 研究首次发现MMPs家族及TIMPs在LSCC的表达谱,并发现TIMP4蛋白的表达与LSCC临床病理特征相关。未来TIMP4蛋白可能作为LSCC潜在的治疗靶点。

关键词: 基因芯片, 喉鳞状上皮细胞癌, 基质金属蛋白酶, 组织金属蛋白酶组织抑制剂

Abstract: Objective The study aimed to discover the gene expression profiles of the matrix metalloproteinases(MMPs)family and tissue inhibitors of matrix metalloproteinases(TIMPs)in laryngeal squamous cell carcinoma(LSCC), to analyze the genes most relevant to LSCC, and finally clarify their relationship with clinicopathological features. Methods Twenty-eight patients with LSCC were studied. In four patients, genes in the MMPs family and TIMPs that are up-regulated or down-regulated simultaneously were detected by a gene chip containing the entire human genome. The gene chip results were verified by reverse transcription-polymerase chain reaction(RT-PCR)and western blot in the other 24 patients. The correlation between the expression of the proteins encoded by the genes and the clinicopathological characteristics of the patients were investigated. Results The gene chip analysis revealed 14 differentially expressed genes of MMPs family between LSCC and adjacent normal cells. Of these, four genes were up-regulated, four were down-regulated, and the remaining six were up-regulated in some patients and down-regulated in others. No genes were consistently up- or down-regulated in the four patients. In contrast, all TIMPs were down-regulated between LSCC and adjacent normal cells. The TIMP4 gene was down-regulated in all four patients. RT-PCR and western blot results showed that the TIMP4 gene and protein was poorly expressed, respectively, in LSCC tissue. Western blot also showed that the expression of TIMP4 protein was correlated with lymph node metastasis. Conclusion To our knowledge, this is the first description of the expression profile of MMPs and TIMPs in LSCC. The expression of TIMP4 protein was associated with the clinicopathological features of LSCC. Future studies may further confirm TIMP4 protein as a predictor of the survival of patients with LSCC and/or a potential therapeutic target of LSCC.

Key words: Gene chip, Laryngeal squamous cell carcinoma, Matrix metalloproteinase, Tissue inhibitor of metalloproteinase

中图分类号: 

  • R739.65
[1] Yin DH, Guo L, Li SS, et al. Clinical significance of neuropilin-2 expression in laryngeal squamous cell carcinoma[J]. Am J Otolaryngol, 2020, 41(4): 102540. doi:10.1016/j.amjoto.2020.102540
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492
[3] Rivière D, Mancini J, Santini L, et al. Lymph-node metastasis following total laryngectomy and total pharyngolaryngectomy for laryngeal and hypopharyngeal squamous cell carcinoma: frequency, distribution and risk factors[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2018, 135(3): 163-166. doi:10.1016/j.anorl.2017.11.008
[4] Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer[J]. CA Cancer J Clin, 2017, 67(1): 31-50. doi:10.3322/caac.21386
[5] 黄恒丰, 马鲲鹏, 杨迪, 等. MiR-181b-5P和EPB41L3蛋白在喉癌中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 41-46. doi:10.6040/j.issn.1673-3770.0.2021.502 HUANG Hengfeng, MA Kunpeng, YANG Di, et al. Expression and clinical significance of miR-181b-5P and EPB41L3 protein in laryngeal squamous cell carci-noma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 41-46. doi:10.6040/j.issn.1673-3770.0.2021.502
[6] Wu YY, Zhang YL, Zheng XW, et al. Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis[J]. Mol Cancer, 2020, 19(1): 99. doi:10.1186/s12943-020-01215-4
[7] Olivares-Urbano MA, Griñán-Lisón C, Zurita M, et al. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: a pilot study[J]. J Cell Mol Med, 2020, 24(1): 139-148. doi:10.1111/jcmm.14671
[8] 裴雪艳, 王琰. 侵袭性伪足和MMP-14在肿瘤发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 129-134. doi: 10.6040/j.issn.1673-3770.0.2019.604 PEI Xueyan, WANG Yan. Progress in the research on the roles of invadopodia and metalloproteinase-14 in tumorigenesis and cancer development[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 129-134. doi: 10.6040/j.issn.1673-3770.0.2019.604
[9] Sala M, Ros M, Saltel F. A complex and evolutive character: two face aspects of ECM in tumor progression[J]. Front Oncol, 2020, 10: 1620. doi:10.3389/fonc.2020.01620
[10] Yuzhalin AE, Lim SY, Kutikhin AG, et al. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis[J]. Biochim Biophys Acta Rev Cancer, 2018, 1870(2): 207-228. doi:10.1016/j.bbcan.2018.09.002
[11] Kaczorowska A, Miękus N, Stefanowicz J, et al. Selected matrix metalloproteinases(MMP-2, MMP-7)and their inhibitor(TIMP-2)in adult and pediatric cancer[J]. Diagnostics, 2020, 10(8): 547. doi:10.3390/diagnostics10080547
[12] Neophytou CM, Panagi M, Stylianopoulos T, et al. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities[J]. Cancers, 2021, 13(9): 2053. doi:10.3390/cancers13092053
[13] Levi N, Papismadov N, Solomonov I, et al. The ECM path of senescence in aging: components and modifiers[J]. FEBS J, 2020, 287(13): 2636-2646. doi:10.1111/febs.15282
[14] Melendez-Zajgla J, del Pozo L, Ceballos G, et al. Tissue inhibitor of metalloproteinases-4. The road less traveled[J]. Mol Cancer, 2008, 7: 85. doi:10.1186/1476-4598-7-85
[15] Lambert E, Dassé E, Haye B, et al. TIMPs as multifacial proteins[J]. Crit Rev Oncol Hematol, 2004, 49(3): 187-198. doi:10.1016/j.critrevonc.2003.09.008
[16] Peeney D, Fan Y, Nguyen T, et al. Matrisome-associated gene expression patterns correlating with TIMP2 in cancer[J]. Sci Rep, 2019, 9(1): 20142. doi:10.1038/s41598-019-56632-3
[17] Simonova OA, Kuznetsova EB, Tanas AS, et al. Abnormal hypermethylation of CpG dinucleotides in promoter regions of matrix metalloproteinases genes in breast cancer and its relation to epigenomic subtypes and HER2 overexpression[J]. Biomedicines, 2020, 8(5): 116. doi:10.3390/biomedicines8050116
[18] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67. doi:10.1016/j.cell.2010.03.015
[19] Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019, 9: 1370. doi:10.3389/fonc.2019.01370
[20] Zou MY, Zhang C, Sun Y, et al. Comprehensive analysis of matrix metalloproteinases and their inhibitors in head and neck squamous cell carcinoma[J]. Acta Oncol, 2022, 61(4): 505-515. doi:10.1080/0284186X.2021.2009564
[21] Ma LJ, Li W, Zhang X, et al. Differential gene expression profiling of laryngeal squamous cell carcinoma by laser capture microdissection and complementary DNA microarrays[J]. Arch Med Res, 2009, 40(2): 114-123. doi:10.1016/j.arcmed.2008.12.005
[22] Koskivirta I, Rahkonen O, Mäyränpää M, et al. Tissue inhibitor of metalloproteinases 4(TIMP4)is involved in inflammatory processes of human cardiovascular pathology[J]. Histochem Cell Biol, 2006, 126(3): 335-342. doi:10.1007/s00418-006-0163-8
[23] Pullen NA, Anand M, Cooper PS, et al. Matrix metalloproteinase-1 expression enhances tumorigenicity as well as tumor-related angiogenesis and is inversely associated with TIMP-4 expression in a model of glioblastoma[J]. J Neurooncol, 2012, 106(3): 461-471. doi:10.1007/s11060-011-0691-5
[24] Ripley D, Tunuguntla R, Susi L, et al. Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinase-3 and-4 in normal ovary and ovarian carcinoma[J]. Int J Gynecol Cancer, 2006, 16(5): 1794-1800. doi:10.1111/j.1525-1438.2006.00714.x
[25] Tunuguntla R, Ripley D, Sang QX, et al. Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinases TIMP-3 and-4 in benign endometrium and endometrial cancer[J]. Gynecol Oncol, 2003, 89(3): 453-459. doi:10.1016/s0090-8258(03)00077-5
[26] Boufraqech M, Zhang LS, Nilubol N, et al. Lysyl oxidase(LOX)transcriptionally regulates SNAI2 expression and TIMP4 secretion in human cancers[J]. Clin Cancer Res, 2016, 22(17): 4491-4504. doi:10.1158/1078-0432.CCR-15-2461
[27] Rorive S, Lopez XM, Maris C, et al. TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas[J]. Mod Pathol, 2010, 23(10): 1418-1428. doi:10.1038/modpathol.2010.136
[28] Bister V, Skoog T, Virolainen S, et al. Increased expression of matrix metalloproteinases-21 and-26 and TIMP-4 in pancreatic adenocarcinoma[J]. Mod Pathol, 2007, 20(11): 1128-1140. doi:10.1038/modpathol.3800956
[29] Hagemann T, Gunawan B, Schulz M, et al. mRNA expression of matrix metalloproteases and their inhibitors differs in subtypes of renal cell carcinomas[J]. Eur J Cancer, 2001, 37(15): 1839-1846. doi:10.1016/s0959-8049(01)00215-5
[30] Lizarraga F, Espinosa M, Maldonado V, et al. Tissue inhibitor of metalloproteinases-4 is expressed in cervical cancer patients[J]. Anticancer Res, 2005, 25(1B): 623-627
[1] 张诗涵,刘红兵. 基质金属蛋白酶对慢性鼻窦炎组织重塑的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 116-123.
[2] 李俊英. 瑞舒伐他汀联合非诺贝特对老年糖尿病视网膜病变患者血管内皮功能的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 72-75.
[3] 李雪盛,钱进,李厚恩,李进让. 慢性鼻-鼻窦炎的组织重塑研究进展[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 84-86.
[4] 吕梅1,董频2,佘翠萍3,杜翠萍1,李勇1,徐尔东1. 3例喉咽癌组织与相邻正常黏膜的基因表达谱差异分析[J]. 山东大学耳鼻喉眼学报, 2010, 24(5): 5-.
[5] 高尚,李大伟,董频,王果,沈斌. FAK及MMP9在喉鳞状细胞癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2010, 24(3): 15-18.
[6] 洪艺云 ,叶胜难 . MMPs及TIMPs诱导血管生成在中耳胆脂瘤增殖中的作用[J]. 山东大学耳鼻喉眼学报, 2009, 23(5): 13-16.
[7] 刘 蕊,时文杰,刘吉祥 . 喉鳞癌组织与相邻正常黏膜的基因表达谱差异[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 68-70 .
[8] 刘冰,吴建 . 基因芯片技术在鼻腔良性病变研究中的应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(4): 370-373 .
[9] 王翠青,申家泉 . 基质金属蛋白酶及其组织抑制剂与原发性开角型青光眼的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 272-276 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!