山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (2): 113-121.doi: 10.6040/j.issn.1673-3770.0.2023.263

• 综述 • 上一篇    下一篇

感音神经性聋的代谢组学研究进展

杨旻,朱晓燕,王旭   

  1. 南京中医药大学附属南京市中西医结合医院 耳鼻喉科, 江苏 南京 210014
  • 出版日期:2024-03-20 发布日期:2024-03-29
  • 通讯作者: 王旭. E-mail:wangxu830@163.com

Progress in metabolomics research in sensorineural hearing loss

YANG Min, ZHU Xiaoyan, WANG Xu   

  1. Department of Otorhinolaryngology, Nanjing University of Traditional Chinese Medicine, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, Jiangsu, China
  • Online:2024-03-20 Published:2024-03-29

摘要: 感音神经性聋是耳科临床常见的疾病,是耳蜗、听神经或听觉中枢器质性病变导致的听力损失,其发病与遗传、年龄、噪声暴露、耳毒性药物等多种因素相关,目前发病率逐年上升且呈现年轻化的趋势。代谢组学是通过采用高通量组学技术对所有代谢物进行鉴定和定量的生命科学研究,近年来在内耳病理生理机制研究中有一定的应用,代谢组学从代谢改变的视角提供了病因探索的新思路,其研究问题包括分析代谢物与感音神经性聋的关联、发现新型代谢标志物、寻找防治感音神经性聋的新策略等。代谢组学在感音神经性聋方面的应用有助于感音神经性聋的早期诊断、个体化治疗和预测其预后。论文综述了感音神经性聋的代谢组学国内外研究进展,对临床试验、动物实验的方法和结果进行了整合和分析,以期为感音神经性聋代谢组学的研究和临床应用提供依据,并提出展望。

关键词: 感音神经性聋, 代谢组学, 综述, 代谢标志物

Abstract: Sensorineural hearing loss is a common clinical disease in otology, which is hearing loss or hearing loss caused by cochlea, auditory nerve or auditory center organic lesions, and its incidence is related to genetics, age, noise exposure, ototoxic drugs and other factors, and the current incidence is increasing year by year and showing a younger trend. Metabolomics is a life science research that uses high-throughput omics technology to identify and quantify all metabolites, and has been applied to the pathophysiological mechanism of the inner ear in recent years, metabolomics provides new ideas for etiological exploration from the perspective of metabolic changes, and its research problems include analyzing the association between metabolites and sensorineural hearing loss, discovering new metabolic markers, and finding new strategies for preventing and treating sensorineural hearing loss. The application of metabolomics in sensorineural hearing loss contributes to the early diagnosis, individualized treatment and prediction of sensorineural hearing loss. In this paper, the research progress of metabolomics of sensorineural hearing loss is reviewed at home and abroad, and the experimental methods and results of clinical trials and animal experiments are integrated and analyzed, in order to provide a basis for the research and clinical application of metabolomics of sensorineural hearing loss, and put forward a prospect.

Key words: Sensorineural hearing loss, Metabolomics, Review, Biomarkers

中图分类号: 

  • R764.43
[1] 塞娜, 韩维举. 感音神经性聋相关内耳免疫及炎症机制的研究进展[J]. 中华耳科学杂志, 2018, 16(2): 221-226. doi:10.3969/j.issn.1672-2922.2018.02.018 SAI Na, HAN Weiju. Mechanisms of inner ear immune and inflammation related to sensorineural hearing loss[J]. Chinese Journal of Otology, 2018, 16(2): 221-226. doi:10.3969/j.issn.1672-2922.2018.02.018
[2] 王香香, 孙建军, 刁明芳. 氧化应激在感音神经性耳聋中的作用机制[J]. 中国听力语言康复科学杂志, 2023, 21(1): 56-60. doi:10.3969/j.issn.1672-4933.2023.01.014 WANG Xiangxiang, SUN Jianjun, DIAO Mingfang. Mechanisms of oxidative stress in sensorineural deafness[J]. Chinese Scientific Journal of Hearing and Speech Rehabilitation, 2023, 21(1): 56-60. doi:10.3969/j.issn.1672-4933.2023.01.014
[3] 唐菲, 杨崇灵, 刘昭颖, 等. 人工耳蜗植入术前筛查的注意事项[J]. 中国听力语言康复科学杂志, 2023, 21(1): 97-100. doi:10.3969/j.issn.1672-4933.2023.01.026 TANG Fei, YANG Chongling, LIU Zhaoying, et al. The issues relating to preoperative screening of cochlear implantation[J]. Chinese Scientific Journal of Hearing and Speech Rehabilitation, 2023, 21(1): 97-100. doi:10.3969/j.issn.1672-4933.2023.01.026
[4] Ren HM, Hu B, Jiang GL. Advancements in prevention and intervention of sensorineural hearing loss[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221104987. doi:10.1177/20406223221104987
[5] Noto A, Piras C, Atzori L, et al. Metabolomics in otorhinolaryngology[J]. Front Mol Biosci, 2022, 9: 934311. doi:10.3389/fmolb.2022.934311
[6] Roberts LD, Souza AL, Gerszten RE, et al. Targeted metabolomics[J]. Curr Protoc Mol Biol, 2012, Chapter 30: Unit30.2.1-Unit30.224. doi:10.1002/0471142727.mb3002s98
[7] Gika HG, Zisi C, Theodoridis G, et al. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1008: 15-25. doi:10.1016/j.jchromb.2015.10.045
[8] Zhang W, Ramautar R. CE-MS for metabolomics: developments and applications in the period 2018-2020[J]. Electrophoresis, 2021, 42(4): 381-401. doi:10.1002/elps.202000203
[9] Wishart DS. NMR metabolomics: a look ahead[J]. J Magn Reson, 2019, 306: 155-161. doi:10.1016/j.jmr.2019.07.013
[10] Papadimitropoulos ME P, Vasilopoulou CG, Maga-Nteve C, et al. Untargeted GC-MS metabolomics[J]. Methods Mol Biol, 2018, 1738: 133-147. doi:10.1007/978-1-4939-7643-0_9
[11] 金拓, 高卫萍. 代谢组学在干眼研究中的应用进展[J]. 眼科新进展, 2022, 42(4): 329-332. doi:10.13389/j.cnki.rao.2022.0066 JIN Tuo, GAO Weiping. Advances in the application of metabolomics in dry eye research[J]. Recent Advances in Ophthalmology, 2022, 42(4): 329-332. doi:10.13389/j.cnki.rao.2022.0066
[12] Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, et al. Untargeted metabolomics strategies-challenges and emerging directions[J]. J Am Soc Mass Spectrom, 2016, 27(12): 1897-1905. doi:10.1007/s13361-016-1469-y
[13] 王治财, 仓彦. 代谢组学在冠状动脉粥样硬化性心脏病中的研究进展[J]. 安徽医药, 2023, 27(7): 1293-1297. doi:10.3969/j.issn.1009-6469.2023.07.005 WANG Zhicai, CANG Yan. Research progress on metabonomics of coronary heart disease[J]. Anhui Medical and Pharmaceutical Journal, 2023, 27(7): 1293-1297. doi:10.3969/j.issn.1009-6469.2023.07.005
[14] 黄文洁, 吴绍文, 刘蕊, 等. 基于质谱的代谢组学数据分析技术研究进展[J]. 广东农业科学, 2022, 49(11): 96-109. doi:10.16768/j.issn.1004-874X.2022.11.011 HUANG Wenjie, WU Shaowen, LIU Rui, et al. Progress in mass spectrometry-based metabolomics data analysis techniques[J]. Guangdong Agricultural Sciences, 2022, 49(11): 96-109. doi:10.16768/j.issn.1004-874X.2022.11.011
[15] Boullaud L, Blasco H, Trinh TT, et al. Metabolomic studies in inner ear pathologies[J]. Metabolites, 2022, 12(3): 214. doi:10.3390/metabo12030214
[16] Pudrith C, Dudley WN. Sensorineural hearing loss and volatile organic compound metabolites in urine[J]. Am J Otolaryngol, 2019, 40(3): 409-412. doi:10.1016/j.amjoto.2019.03.001
[17] Kaderbay A, Berger F, Bouamrani A, et al. Perilymph metabolomic and proteomic MALDI-ToF profiling with porous silicon chips: a proof-of-concept study[J]. Hear Res, 2022, 417: 108457. doi:10.1016/j.heares.2022.108457
[18] Peter MS, Warnecke A, Staecker H. A window of opportunity: perilymph sampling from the round window membrane can advance inner ear diagnostics and therapeutics[J]. J Clin Med, 2022, 11(2): 316. doi:10.3390/jcm11020316
[19] Trinh TT, Blasco H, Emond P, et al. Relationship between metabolomics profile of perilymph in cochlear-implanted patients and duration of hearing loss[J]. Metabolites, 2019, 9(11): 262. doi:10.3390/metabo9110262
[20] Wang LB, Liu Y, Wu LJ, et al. Sialyltransferase inhibition and recent advances[J]. Biochim Biophys Acta, 2016, 1864(1): 143-153. doi:10.1016/j.bbapap.2015.07.007
[21] Natarajan N, Batts S, Stankovic KM. Noise-induced hearing loss[J]. J Clin Med, 2023, 12(6): 2347. doi:10.3390/jcm12062347
[22] Mao HY, Chen Y. Noise-induced hearing loss: updates on molecular targets and potential interventions[J]. Neural Plast, 2021: 4784385. doi:10.1155/2021/4784385
[23] 吉佳慧, 苗龙, 万柳, 等. 噪声暴露对大鼠代谢组学的影响[J]. 环境与职业医学, 2020, 37(5): 433-439.?doi:10.13213/j.cnki.jeom.2020.20059 JI Jiahui, MIAO Long, WAN Liu, et al. Metabolomic effects of noise exposure on rats[J]. Journal of Environmental and Occupational Medicine, 2020, 37(5): 433-439. doi:10.13213/j.cnki.jeom.2020.20059
[24] Miao L, Wang BS, Zhang J, et al. Plasma metabolomic profiling in workers with noise-induced hearing loss: a pilot study[J]. Environ Sci Pollut Res Int, 2021, 28(48): 68539-68550. doi:10.1007/s11356-021-15468-z
[25] Zhang XZ, Li NN, Cui YN, et al. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers[J]. Front Mol Biosci, 2022, 9: 907832. doi:10.3389/fmolb.2022.907832
[26] Ji LC, Lee HJ, Wan GQ, et al. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma[J]. Sci Rep, 2019, 9(1): 9273. doi:10.1038/s41598-019-45385-8
[27] Boullaud L, Blasco H, Caillaud E, et al. Immediate-early modifications to the metabolomic profile of the perilymph following an acoustic trauma in a sheep model[J]. J Clin Med, 2022, 11(16): 4668. doi:10.3390/jcm11164668
[28] Miao L, Zhang J, Yin LH, et al. Metabolomics analysis reveals alterations in cochlear metabolic profiling in mice with noise-induced hearing loss[J]. Biomed Res Int, 2022: 9548316. doi:10.1155/2022/9548316
[29] He J, Zhu YJ, Aa JY, et al. Brain metabolic changes in rats following acoustic trauma[J]. Front Neurosci, 2017, 11: 148. doi:10.3389/fnins.2017.00148
[30] Fujita T, Yamashita D, Irino Y, et al. Metabolomic profiling in inner ear fluid by gas chromatography/mass spectrometry in guinea pig cochlea[J]. Neurosci Lett, 2015, 606: 188-193. doi:10.1016/j.neulet.2015.09.001
[31] PirttilöK, Videhult Pierre P, Hagläf J, et al. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed guinea pigs[J]. Metabolomics, 2019, 15(10): 138. doi:10.1007/s11306-019-1595-1
[32] Tripathi P, Deshmukh P. Sudden sensorineural hearing loss: a review[J]. Cureus, 2022, 14(9): e29458. doi:10.7759/cureus.29458
[33] Wang XS, Gao Y, Jiang RR. Diagnostic and predictive values of serum metabolic profiles in sudden sensorineural hearing loss patients[J]. Front Mol Biosci, 2022, 9: 982561. doi:10.3389/fmolb.2022.982561
[34] 王思琪. 基于液相色谱—质谱联用技术的突发性聋血浆代谢组学初步研究[D]. 南京: 东南大学, 2021
[35] Xiong H, Lai L, Ye YY, et al. Glucose protects cochlear hair cells against oxidative stress and attenuates noise-induced hearing loss in mice[J]. Neurosci Bull, 2021, 37(5): 657-668. doi:10.1007/s12264-020-00624-1
[36] 龙梦琦, 冯永, 吴学文. 氧化应激相关基因多态性与突发性聋的研究进展[J]. 中华耳科学杂志, 2020, 18(2): 358-362. doi:10.3969/j.issn.1672-2922.2020.02.027 LONG Mengqi, FENG Yong, WU Xuewen. Progress in research on oxidative stress-related gene polymorphisms and sudden sensorineural hearing loss[J]. Chinese Journal of Otology, 2020, 18(2): 358-362. doi:10.3969/j.issn.1672-2922.2020.02.027
[37] 顾向阳, 柯红林, 曹明根. 突发性聋患者血液流变学特性及脂代谢研究[J]. 中国耳鼻咽喉头颈外科, 2012, 19(9): 487-489. doi:10.16066/j.1672-7002.2012.09.009 GU Xiangyang, KE Honglin, CAO Minggen. Hemorheology and lipid metabolism of sudden deafness[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2012, 19(9): 487-489. doi:10.16066/j.1672-7002.2012.09.009
[38] Rashnuodi P, Amiri A, Omidi M, et al. The effects of dyslipidemia on noise-induced hearing loss in petrochemical workers in the Southwest of Iran[J]. Work, 2021, 70(3): 875-882. doi:10.3233/WOR-213607
[39] Carta F, Lussu M, Bandino F, et al. Metabolomic analysis of urine with Nuclear Magnetic Resonance spectroscopy in patients with idiopathic sudden sensorineural hearing loss: a preliminary study[J]. Auris Nasus Larynx, 2017, 44(4): 381-389. doi:10.1016/j.anl.2016.10.003
[40] Mirsalehi M, Ghajarzadeh M, Farhadi M, et al. Intratympanic corticosteroid injection as a first-line treatment of the patients with idiopathic sudden sensorineural hearing loss compared to systemic steroid: a systematic review and meta-analysis[J]. Am J Otolaryngol, 2022, 43(5): 103505. doi:10.1016/j.amjoto.2022.103505
[41] Rojas-Morales P, Pedraza-Chaverri J, Tapia E. Ketone bodies, stress response, and redox homeostasis[J]. Redox Biol, 2020, 29: 101395. doi:10.1016/j.redox.2019.101395
[42] Puchalska P, Crawford PA. Metabolic and signaling roles of ketone bodies in health and disease[J]. Annu Rev Nutr, 2021, 41: 49-77. doi:10.1146/annurev-nutr-111120-111518
[43] 王青玲, 郭向东. 老年性聋发病机制的研究进展[J]. 听力学及言语疾病杂志, 2022, 30(1): 96-100. doi:10.3969/j10.3969/j.issn.1006-7299.2022.01.024 WANG Qingling, GUO Xiangdong. Research progress on the pathogenesis of presbycusis[J]. Journal of Audiology and Speech Pathology, 2022, 30(1): 96-100. doi:10.3969/j10.3969/j.issn.1006-7299.2022.01.024
[44] Wang C, Qiu JJ, Li GJ, et al. Application and prospect of quasi-targeted metabolomics in age-related hearing loss[J]. Hear Res, 2022, 424: 108604. doi:10.1016/j.heares.2022.108604
[45] 赵艳, 蒋军, 陈学敏, 等. 耳毒性药物的种类及其对内耳的损伤机制与预防[J]. 西北国防医学杂志, 2019, 40(11): 718-723. doi:10.16021/j.cnki.1007-8622.2019.11.013 ZHAO Yan, JIANG Jun, CHEN Xuemin, et al. Types of ototoxic drugs and mechanisms of inner ear injury and its prevention[J]. Medical Journal of National Defending Forces in Northwest China, 2019, 40(11): 718-723. doi:10.16021/j.cnki.1007-8622.2019.11.013
[46] Videhult Pierre P, Haglöf J, Linder B, et al. Cisplatin-induced metabolome changes in serum: an experimental approach to identify markers for ototoxicity[J]. Acta Otolaryngol, 2017, 137(10): 1024-1030. doi:10.1080/00016489.2017.1325006
[47] Balram A, Thapa S, Chatterjee S. Glycosphingolipids in diabetes, oxidative stress, and cardiovascular disease: prevention in experimental animal models[J]. Int J Mol Sci, 2022, 23(23): 15442. doi:10.3390/ijms232315442
[48] Fransson AE, Kisiel M, Pirttilä K, et al. Hydrogen inhalation protects against ototoxicity induced by intravenous cisplatin in the guinea pig[J]. Front Cell Neurosci, 2017, 11: 280. doi:10.3389/fncel.2017.00280
[49] 杨琨, 陈利娟, 何小丹, 等. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195 YANG Kun, CHEN Lijuan, HE Xiaodan, et al. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195
[50] 戚国伟, 于宁, 杨仕明, 等. 代谢组学技术在噪声性聋研究中的应用[J]. 中华耳科学杂志, 2022, 20(2): 242-246. doi:10.3969/j.issn.1672-2922.2022.02.015 QI Guowei, YU Ning, YANG Shiming, et al. Application of metabolomics in research on noise induced hearing loss[J]. Chinese Journal of Otology, 2022, 20(2): 242-246. doi:10.3969/j.issn.1672-2922.2022.02.015
[51] Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration[J]. Development, 2019, 146(17): dev177188. doi:10.1242/dev.177188
[1] 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124.
[2] 肖西立,聂渝晓,陈婕. 国内近10年干眼相关研究——基于Citespace的可视化分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 86-97.
[3] 向浏岚,叶远航,蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122.
[4] 宋西成,郑海涛. 甲状旁腺自荧光显影技术应用研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 19-25.
[5] 谢慧. 变应性鼻炎的中医治疗[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 22-25.
[6] 王志远, 张革化. 慢性鼻-鼻窦炎小鼠模型及应用现状[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 76-78.
[7] 孙昌志, 刘文龙, 李琰, 罗仁忠. 双耳感音神经性聋患儿合并分泌性中耳炎的临床诊治[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 11-14.
[8] 尹海英, 古林涛, 于淑东, 王启荣. 人工耳蜗植入术围手术期处理及注意事项[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 19-21.
[9] 王晓勇, 宋西成. 鼻内镜下上颌窦良性病变的手术入路[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 90-92.
[10] 卢娜. 三种不同给药途径治疗突发性感音神经性耳聋的效果对比[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 24-27.
[11] 张健, 吴建. 蛋白质组学技术在鼻腔良性病变研究中的应用[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 95-98.
[12] 康沙沙, 雷大鹏. 嗓音质量评估研究进展[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 76-78.
[13] 时少丹1,刘景2,张伟2,张晗2. 原发性闭角型青光眼合并白内障手术方式的系统评价[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 84-90.
[14] 邵雁1,徐新荣2. 中药治疗年龄相关性黄斑变性研究进展[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 91-94.
[15] 王永福1, 张庆泉2. 腭正中囊肿[J]. 山东大学耳鼻喉眼学报, 2013, 27(1): 83-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[2] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[3] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[4] 徐赛男,杨雷 . 红霉素促进鼻息肉上皮细胞凋亡的实验研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 27 -29 .
[5] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[6] 刘联合 . 颈深部脓肿37例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 180 -181 .
[7] 谢治年 ,姬长友 . RNA干扰及其在喉鳞癌研究中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 200 -203 .
[8] 乔 艺,倪关森,陈文文 . 改良悬雍垂腭咽成形术联合鼻腔手术治疗阻塞性睡眠呼吸暂停综合征38例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 206 -208 .
[9] 汪晓锋,林 昶,程金妹 . 不同龄小鼠内耳中ABAD的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 207 -211 .
[10] 凡启军,黄治物,梅 玲,肖伯奎 . 荧光定量PCR测定水杨酸钠作用后大鼠耳蜗基因的表达[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 212 -214 .