山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (2): 145-151.doi: 10.6040/j.issn.1673-3770.0.2024.036

• 综述 • 上一篇    

机器学习预测模型在突发性聋中的临床应用研究

李培培1,卢彦青2,侯楠3   

  1. 1.成都医学院第一附属医院 耳鼻咽喉头颈外科, 四川 成都 610500;
    2.重庆医科大学附属巴南医院 耳鼻咽喉科, 重庆 401320;
    3.四川泰康医院 耳鼻喉科, 四川 成都 610213
  • 发布日期:2025-03-26
  • 通讯作者: 侯楠. E-mail:110565888@qq.com

Research progress of machine learning prediction model in clinical application of sudden deafness

LI Peipei1, LU Yanqing2, HOU Nan3   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery , The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China 2. Department of Otorhinolaryngology, Banan Hospital, Chongqing Medical University, Chongqing 401320, China3. Department of Otolaryngology , Sichuan Taikang Hospital, Chengdu 610213, Sichuan, China
  • Published:2025-03-26

摘要: 突发性聋由于其病因及发病不明确,目前国内外仍没有统一的治疗方案。临床上面对不同的突发性聋患者也无法直接预估出患者预后的有效率和制定出最适合患者的治疗方案。随着大数据及计算机信息时代的发展,机器学习(machine learning,ML)为代表的人工智能应用可帮助实现患者教育及医患共同决策从一个抽象的概念转化为具体的可操作形式,从而评估疾病预后有效率及制定疾病的治疗方案。研究综述ML预测模型建立的全过程及在突聋中的应用,旨在为临床医务人员提供突聋疗效评估及方案制定的相关参考信息,更好地实现医患共同决策及提高突聋的疗效。

关键词: 突发性聋, 机器学习, 预测模型

Abstract: Due to the unclear aetiology and pathogenesis of sudden deafness, there is still no uniform treatment plan at home and abroad. In the face of different sudden deafness patients, it is not possible to directly estimate the effective prognosis of patients and formulate the most suitable treatment plan for patients. With the development of big data and the computer information age, the application of artificial intelligence represented by machine learning(ML)can help transform patient education and joint decision-making between doctors and patients from an abstract concept into a concrete operable form, so as to evaluate the prognosis and effectiveness of diseases and formulate treatment plans for diseases. The purpose of this paper is to review the whole process of ML prediction model construction and its application to sudden deafness, with the aim of providing relevant reference information for clinical staff to evaluate the curative effect of sudden deafness and make plans, so as to better realise joint decision-making between doctors and patients and improve the curative effect of sudden deafness.

Key words: Sudden deafness, Machine learning, Forecast

中图分类号: 

  • R764.35
[1] Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: sudden hearing loss(update)[J]. Otolaryngol Head Neck Surg, 2019, 161(1_suppl): S1-S45. doi:10.1177/0194599819859885
[2] Kim SY, Min CY, Lee CH, et al. Bidirectional relation between depression and sudden sensorineural hearing loss: two longitudinal follow-up studies using a national sample cohort[J]. Sci Rep, 2020, 10(1): 1482. doi:10.1038/s41598-020-58547-w
[3] Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical Practice Guideline: Sudden Hearing Loss(Update)[J]. Otolaryngol Head Neck Surg, 2019,161(1_suppl):S1-S45. doi: 10.1177/0194599819859885
[4] Chow N, Gallo L, Busse JW. Evidence-based medicine and precision medicine: complementary approaches to clinical decision-making[J]. Precis Clin Med, 2018, 1(2): 60-64. doi:10.1093/pcmedi/pby009
[5] Sajjadian M, Lam RW, Milev R, et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis[J]. Psychol Med, 2021, 51(16): 2742-2751. doi:10.1017/S0033291721003871
[6] Velde HM, Rademaker MM, Damen J, et al. Prediction models for clinical outcome after cochlear implantation: a systematic review[J]. J Clin Epidemiol, 2021, 137: 182-194. doi:10.1016/j.jclinepi.2021.04.005
[7] 夏静. 基于有限数据的临床预测模型研究[D]. 杭州: 浙江大学, 2019.
[8] 郑帅, 黄韬, 杨瑞, 等. 多变量选择方法在临床预测模型中的验证: 基于MIMIC数据库[J]. 中国循证医学杂志, 2021, 21(12): 1463-1467. doi:10.7507/1672-2531.202107175 ZHENG Shuai, HUANG Tao, YANG Rui, et al. Validation of multivariate selection method in clinical prediction models: based on MIMIC database[J]. Chinese Journal of Evidence-Based Medicine, 2021, 21(12): 1463-1467. doi:10.7507/1672-2531.202107175
[9] Adams ST, Leveson SH. Clinical prediction rules[J]. BMJ, 2012, 344: d8312. doi:10.1136/bmj.d8312
[10] Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC[J]. Ecology, 2014, 95(3): 631-636. doi:10.1890/13-1452.1
[11] Ahmed N, Abbasi MS, Zuberi F, et al. Artificial intelligence techniques: analysis, application, and outcome in dentistry-a systematic review[J]. Biomed Res Int, 2021, 2021: 9751564. doi:10.1155/2021/9751564
[12] Cho Y, Kim J, Oh SJ, et al. Clinical features and prognosis of severe-to-profound sudden sensorineural hearing loss[J]. Am J Otolaryngol, 2022, 43(3): 103455. doi:10.1016/j.amjoto.2022.103455
[13] 郑重, 沈颖, 夏俍, 等. 全频型突发性聋的疗效影响因素分析[J]. 中华耳科学杂志, 2020, 18(1): 74-79. doi:10.3969/j.issn.1672-2922.2020.01.013 ZHENG Zhong, SHEN Ying, XIA Liang, et al. Analysis of factors affecting treatment outcomes in all frequency sudden sensorineural hearing loss[J]. Chinese Journal of Otology, 2020, 18(1): 74-79. doi:10.3969/j.issn.1672-2922.2020.01.013
[14] Lam M, Bao YY, Hua GB, et al. Sudden sensorineural hearing loss and metabolic syndrome: a systematic review and meta-analysis[J]. Otol Neurotol, 2021, 42(9): 1308-1313. doi:10.1097/MAO.0000000000003302
[15] 杨峻豪, 高敏琦, 张秋静. 肾功能不全患者突发性耳聋的诊疗进展[J]. 中华耳科学杂志, 2022, 20(3): 471-475. doi:10.3969/j.issn.1672-2922.2022.03.019 YANG Junhao, GAO Minqi, ZHANG Qiujing. Progress in diagnosis and treatment of sudden sensorineural hearing loss in patients with renal insufficiency[J]. Chinese Journal of Otology, 2022, 20(3): 471-475. doi:10.3969/j.issn.1672-2922.2022.03.019
[16] Ha SM, Hwang KR, Park IH, et al. Circulating microRNAs as potentially new diagnostic biomarkers of idiopathic sudden sensorineural hearing loss[J]. Acta Otolaryngol, 2020, 140(12): 1013-1020. doi:10.1080/00016489.2020.1810859
[17] Troiano G, Nibali L, Petsos H, et al. Development and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss[J]. J Clin Periodontol, 2023, 50(3): 348-357. doi:10.1111/jcpe.13739
[18] Zhao Y, Zhang RS, Zhong Y, et al. Statistical analysis and machine learning prediction of disease outcomes for COVID-19 and pneumonia patients[J]. Front Cell Infect Microbiol, 2022, 12: 838749. doi:10.3389/fcimb.2022.838749
[19] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215. doi:10.1016/j.neucom.2019.10.118
[20] 崔静静, 胡泽文, 任萍. 基于决策树和逻辑回归模型的人工智能领域潜在“精品” 论文识别研究[J]. 情报科学, 2022, 40(5): 90-96. doi:10.13833/j.issn.1007-7634.2022.05.012 CUI Jingjing, HU Zewen, REN Ping. Identification of “hidden treasures” among massive literature from artificial intelligence field based on decision tree and logistic regression[J]. Information Science, 2022, 40(5): 90-96. doi:10.13833/j.issn.1007-7634.2022.05.012
[21] Yu XH, Wang T, Huang SP, et al. How can gene-expression information improve prognostic prediction in TCGA cancers: an empirical comparison study on regularization and mixed cox models[J]. Front Genet, 2020, 11: 920. doi:10.3389/fgene.2020.00920
[22] Yeo CD, Yeom SW, You YS, et al. Association of sudden sensorineural hearing loss with increased risk of insomnia: a nationwide population-based cohort study[J]. J Clin Sleep Med, 2022, 18(5): 1335-1342. doi:10.5664/jcsm.9864
[23] Lin SC, Lin MY, Kang BH, et al. Artificial neural network-assisted classification of hearing prognosis of sudden sensorineural hearing loss with Vertigo[J]. IEEE J Transl Eng Health Med, 2023, 11: 170-181. doi:10.1109/JTEHM.2023.3242339
[24] Doubleday K, Zhou J, Zhou H, et al. Risk controlled decision trees and random forests forprecision Medicine[J]. Stat Med, 2022, 41(4): 719-735. doi:10.1002/sim.9253
[25] Chang YS, Park H, Hong SH, et al. Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: a preliminary study[J]. PLoS One, 2019, 14(6): e0217790. doi:10.1371/journal.pone.0217790
[26] Miron M, Moldovanu S, tef nescu BI, et al. A new approach in detectability of microcalcifications in the placenta during pregnancy using textural features and K-nearest neighbors algorithm[J]. J Imaging, 2022, 8(3): 81. doi:10.3390/jimaging8030081
[27] Hohmann E. Editorial commentary: big data and machine learning in medicine[J]. Arthroscopy, 2022, 38(3): 848-849. doi:10.1016/j.arthro.2021.10.008
[28] 黄英辉, 李立奇, 罗万春. 支持向量机在临床疾病诊断中的应用[J]. 数学的实践与认识, 2008, 38(23): 101-103. HUANG Yinghui, LI Liqi, LUO Wanchun. The use of SVM in the clinical disease diagnosis[J]. Mathematics in Practice and Theory, 2008, 38(23): 101-103.
[29] Rodríguez-Pérez R, Bajorath J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery[J]. J Comput Aided Mol Des, 2022, 36(5): 355-362. doi:10.1007/s10822-022-00442-9
[30] Liu L, Fan J, Zhan H, et al. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss[J]. Front Psychiatry, 2022, 13: 967391. doi:10.3389/fpsyt.2022.967391
[31] Mac A, Xu T, Wu JKY, et al. Deep learning using multilayer perception improves the diagnostic acumen of spirometry: a single-centre Canadian study[J]. BMJ Open Respir Res, 2022, 9(1): e001396. doi:10.1136/bmjresp-2022-001396
[32] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application[J]. J Microbiol Methods, 2000, 43(1): 3-31. doi:10.1016/s0167-7012(00)00201-3
[34] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. doi:10.1145/3065386
[35] Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. doi:10.1038/s41591-018-0316-z
[36] 扈晓君, 杨宝栋. 基于深度学习的医学图像分析综述[J]. 电子技术与软件工程, 2021(18): 137-138. HU Xiaojun, YANG Baodong. Summary of medical image analysis based on deep learning[J]. Electronic Technology & Software Engineering, 2021(18): 137-138.
[37] Kim M, Lee HJ, Lee S, Lee J, Kang Y. Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction[J]. Eur Radiol, 2024. doi: 10.1007/s00330-023-10580-9
[38] Austin PC, Tu JV. Bootstrap methods for developing predictive models[J]. Am Stat, 2004, 58(2): 131-137. doi:10.1198/0003130043277
[39] Verhaeghe J, Dhaese SAM, De Corte T, et al. Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients[J]. BMC Med Inform Decis Mak, 2022, 22(1): 224. doi:10.1186/s12911-022-01970-y
[40] Deutsch BC, Collopy C, Kallogjeri D, et al. Validation of hearing loss prediction tool for cisplatin chemotherapy and radiation in head and neck cancer treatment[J]. JAMA Otolaryngol Head Neck Surg, 2021, 147(2): 182-189. doi:10.1001/jamaoto.2020.4620
[41] Gittleman H, Sloan AE, Barnholtz-Sloan JS. An independently validated survival nomogram for lower-grade glioma[J]. Neuro Oncol, 2020, 22(5): 665-674. doi:10.1093/neuonc/noz191
[42] Simani L, Oron Y, Handzel O, et al. Evaluation of the quality of online information on sudden sensorineural hearing loss[J]. Otol Neurotol, 2022, 43(2): 159-164. doi:10.1097/MAO.0000000000003424
[43] Park KV, Oh KH, Jeong YJ, et al. Machine learning models for predicting hearing prognosis in unilateral idiopathic sudden sensorineural hearing loss[J]. Clin Exp Otorhinolaryngol, 2020, 13(2): 148-156. doi:10.21053/ceo.2019.01858
[44] Uhm T, Lee JE, Yi S, et al. Predicting hearing recovery following treatment of idiopathic sudden sensorineural hearing loss with machine learning models[J]. Am J Otolaryngol, 2021, 42(2): 102858. doi:10.1016/j.amjoto.2020.102858
[45] Lee MK, Jeon ET, Baek N, et al. Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence[J]. Sci Rep, 2022, 12(1): 3977. doi: 10.1038/s41598-022-07881-2
[46] Bing D, Ying J, Miao J, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models[J]. Clin Otolaryngol,2018,32(15):1125-1129. doi:10.13201/j.issn.1001-1781.2018.15.001
[47] 汪志伟, 陆月文, 窦晓辉, 等. 基于人工智能下突发性聋与血清指标的相关因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004 WANG Zhiwei, LU Yuewen, DOU Xiaohui, et al. Analysis of related factors between sudden sensorineural hearing loss and serum indices base on artificial intelligence and big data[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004
[1] 王鑫,原晶晶,郝鹏鹏,闫占峰,刘建华,钟利群,刘思溟,吴薇,赵晓阳,张莹. 中药复方治疗突发性聋的疗效和可能机制:一项结合网络药理学研究的回顾性临床分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 6-17.
[2] 郭翔,马永强,伊海金. 突发性聋磁共振检查的现状与进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 140-144.
[3] 陈丹萍,何子键,虞幼军,周晓娓. 儿童突发性聋10年住院病例的疗效及预后相关因素分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 16-22.
[4] 梁俊杰,张佳佳,张琳婧,孟言,李阳,白鹏. 中西医结合治疗突发性聋合并手足口病1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 91-95.
[5] 张佳佳,石安妮,邢御,洪玉颖,白鹏. 针刺联合西药治疗全聋型突发性聋1例与文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 88-92.
[6] 刘佳钰,樊慧明,邹游,陈始明. 人工智能在鼻咽癌诊断与治疗中的应用研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 135-142.
[7] 肖富亮,林云,潘新良. 早期cN0 PTC预防性中央区淋巴结清扫的临床研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 64-71.
[8] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[9] 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131.
[10] 李静静,武欣欣,毛宁,郑桂彬,牟亚魁,初同朋,贾传亮,郑海涛,米佳,宋西成. 基于CT影像组学诺模图术前预测甲状腺乳头状癌颈部中央区淋巴结转移的研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 51-59.
[11] 谭玉芳,易天华. 鼻咽癌放疗后突发性聋18例[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 35-39.
[12] 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45.
[13] 宗小芳,胡国华,钟时勋,雷艳,江黎珠,康厚墉. 影响低频下降型突发性聋不伴眩晕预后的相关因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 33-37.
[14] 叶毅良,卢标清. 704例突发性耳聋疗效分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 44-47.
[15] 钟晓声,杨海弟,郑亿庆. 突发性聋伴耳鸣的治疗与转归[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!