山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (6): 31-39.doi: 10.6040/j.issn.1673-3770.0.2024.242

• 论著 • 上一篇    

年龄相关性听力损失患者前扣带回神经递质水平及其与听力水平关系的初步研究

陶朵朵1,史彬1,赵云舒2,李勇刚2,刘济生1   

  1. 苏州大学附属第一医院 1.耳鼻咽喉科/苏州市耳鼻咽喉头颈外科临床医学中心;
    2.放射科, 江苏 苏州 215006
  • 发布日期:2025-11-19
  • 通讯作者: 刘济生. E-mail:sdfyyljs@sina.com
  • 基金资助:
    国家自然科学基金项目(82171159);江苏省研究生科研与实践创新计划项目(KYCX24_3346);苏州市科技计划项目(SKY2023043);苏州市基础研究试点项目(SSD2024025)

Preliminary study on neurotransmitter levels in the anterior cingulate cortex and their relationship with hearing levels in patients with age-related hearing loss

TAO Duoduo1, SHI Bin1, ZHAO Yunshu2, LI Yonggang2, LIU Jisheng1   

  1. 1. Department of Otorhinolaryngology/Suzhou Clinical Medical Center for Otorhinolaryngology Head and Neck Surgery;
    2. Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
  • Published:2025-11-19

摘要: 目的 初步探究年龄相关性听力损失患者的前扣带回(anterior cingulate cortex,ACC)是否存在神经递质改变。 方法 本研究纳入年龄相关性听力损失(age-related hearing loss, ARHL)患者8例,匹配相当年龄、性别等一般资料的听力正常(normal hearing, NH)老年人8例作为对照组。采用纯音听阈测试评估所有受试者0.25、0.5、1、2、4及8 kHz的听力水平。采用磁共振波谱(magnetic resonance spectroscopy, MRS)技术测定两组受试者ACC的γ-氨基丁酸(γ-aminobutyric acid, GABA)和谷氨酸盐-谷氨酰胺(glutamine and glutamate, GLx)水平。应用SPSS 27.0对数据进行统计分析。 结果 ARHL组相比NH组GABA水平下降(P=0.021)、GLx水平升高(P<0.001),GABA水平与8 kHz纯音听阈呈显著负相关(P=0.014),Glx水平与0.5、1.0、2.0、4.0和8.0 kHz纯音听阈均呈正相关(P<0.05)。 结论 年龄相关性听力损失患者前扣带回神经递质存在紊乱,且与听力损失程度及频率相关,这为探索ARHL相关脑区的分子水平改变提供了参考。

关键词: 年龄相关性听力损失, 前扣带回, y-氨基丁酸, 谷氨酸盐-谷氨酰胺, 听力水平

Abstract: Objective This study aims to explore whether ARHL is related to the ACC from the perspective of neurotransmitter levels, thereby providing experimental evidence for understanding the mechanisms of ARHL. Methods The study included 8 ARHL patients, 8 age-matched, gender-matched normal hearing(NH)elderly individuals were recruited as the control group. Pure-tone audiometry was used to assess the hearing levels of all subjects at 0.25, 0.5, 1, 2, 4, and 8 kHz. Magnetic resonance spectroscopy(MRS)was employed to measure γ-aminobutyric acid(GABA)and glutamine-glutamate(Glx)levels in the ACC of both groups. Data were statistically analyzed using SPSS v27.0. Results Compared to the NH group, the ARHL group showed significantly lower GABA levels(P=0.021)and significantly higher Glx levels(P<0.001). GABA levels were significantly negatively correlated with 8 kHz pure-tone thresholds(P=0.014), and Glx levels were significantly positively correlated with pure-tone thresholds at 0.5, 1, 2, 4, and 8 kHz(all P<0.05). Conclusion Neurotransmitter dysregulation in the ACC of ARHL patients is associated with the degree and frequency of hearing loss, which may provide a theoretical basis for future research on the mechanisms underlying ARHL.

Key words: Age-related hearing loss, Anterior cingulate cortex, γ-aminobutyric acid, Glutamate-glutamine, Hearing level

中图分类号: 

  • R764.43+6
[1] Bowl MR, Dawson SJ. Age-related hearing loss[J]. Cold Spring Harb Perspect Med, 2019, 9(8): 033217. doi:10.1101/cshperspect.a033217
[2] Tawfik KO, Klepper K, Saliba J, et al. Advances in understanding of presbycusis[J]. J Neurosci Res, 2020, 98(9): 1685-1697. doi:10.1002/jnr.24426
[3] 周颖东, 张梦娴, 王青玲, 等. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1):72-78. doi:10.6040/j.issn.1673-3770.0.2022.518 ZHOU Yingdong, ZHANG Mengxian, WANG Qingling, et al. Progress of research of oxidative stress in the pathogenesis of presbycusis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1):72-78. doi:10.6040/j.issn.1673-3770.0.2022.518
[4] Caspary DM, Schatteman TA, Hughes LF. Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs[J]. J Neurosci, 2005, 25(47): 10952-10959. doi:10.1523/JNEUROSCI.2451-05.2005
[5] Peelle JE, Wingfield A. The neural consequences of age-related hearing loss[J]. Trends Neurosci, 2016, 39(7): 486-497. doi:10.1016/j.tins.2016.05.001
[6] Gao F, Wang GB, Ma W, et al. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy[J]. Neuroimage, 2015, 106: 311-316. doi:10.1016/j.neuroimage.2014.11.023
[7] Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory[J]. Brain Struct Funct, 2019, 224(9): 3001-3018. doi:10.1007/s00429-019-01945-2
[8] Crottaz-Herbette S, Menon V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence[J]. J Cogn Neurosci, 2006, 18(5): 766-780. doi:10.1162/jocn.2006.18.5.766
[9] Eckert MA, Teubner-Rhodes S, Vaden KI Jr. Is listening in noise worth it? the neurobiology of speech recognition in challenging listening conditions[J]. Ear Hear, 2016, 37(Suppl 1): 101S-110S. doi:10.1097/AUD.0000000000000300
[10] Edden RAE, Muthukumaraswamy SD, Freeman TCA, et al. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex[J]. J Neurosci, 2009, 29(50): 15721-15726. doi:10.1523/JNEUROSCI.4426-09.2009
[11] Fu XN, Qin MT, Liu XM, et al. Decreased GABA levels of the anterior and posterior cingulate cortex are associated with executive dysfunction in mild cognitive impairment[J]. Front Neurosci, 2023, 17: 1220122. doi:10.3389/fnins.2023.1220122
[12] Tsai Do BS, Bush ML, Weinreich HM, et al. Clinical practice guideline: age-related hearing loss[J]. Otolaryngol Head Neck Surg, 2024, 170(2): 1-54. doi:10.1002/ohn.750
[13] Yang Y, Rui QY, Han ST, et al. Reduced GABA levels in the medial prefrontal cortex are associated with cognitive impairment in patients with NMOSD[J]. Mult Scler Relat Disord, 2022, 58: 103496. doi:10.1016/j.msard.2022.103496
[14] van Veenendaal TM, Backes WH, van Bussel FCG, et al. Glutamate quantification by PRESS or MEGA-PRESS: validation, repeatability, and concordance[J]. Magn Reson Imaging, 2018, 48: 107-114. doi:10.1016/j.mri.2017.12.029
[15] Brix MK, Dwyer GE, Craven AR, et al. MEGA-PRESS and PRESS measure oxidation of glutathione in a phantom[J]. Magn Reson Imaging, 2019, 60: 32-37. doi:10.1016/j.mri.2019.03.020
[16] Edden RAE, Barker PB. Spatial effects in the detection of gamma-aminobutyric acid: improved sensitivity at high fields using inner volume saturation[J]. Magn Reson Med, 2007, 58(6): 1276-1282. doi:10.1002/mrm.21383
[17] Kovalová M, Mrázková E, ?kerková M, et al. The Importance of Screening for Hearing Loss in the Elderly[J]. Otolaryngol Pol, 2021,76(3):32-38. doi:10.5604/01.3001.0015.6493
[18] Li HZ, Jia JP, Yang ZQ. Mini-mental state examination in elderly Chinese: a population-based normative study[J]. J Alzheimers Dis, 2016, 53(2): 487-496. doi:10.3233/JAD-160119
[19] Puts NAJ, Edden RAE. In vivo magnetic resonance spectroscopy of GABA: a methodological review[J]. Prog Nucl Magn Reson Spectrosc, 2012, 60: 29-41. doi:10.1016/j.pnmrs.2011.06.001
[20] Edden RAE, Puts NAJ, Harris AD, et al. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra[J]. J Magn Reson Imaging, 2014, 40(6): 1445-1452. doi:10.1002/jmri.24478
[21] Srinivasan R, Sailasuta N, Hurd R, et al. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T[J]. Brain, 2005, 128(Pt 5): 1016-1025. doi:10.1093/brain/awh467
[22] Shungu DC, Mao XL, Gonzales R, et al. Brain γ-aminobutyric acid(GABA)detection in vivo with the J-editing(1)H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability[J]. NMR Biomed, 2016, 29(7): 932-942. doi:10.1002/nbm.3539
[23] Arm J, Oeltzschner G, Al-Iedani O, et al. Altered in vivo brain GABA and glutamate levels are associated with multiple sclerosis central fatigue[J]. Eur J Radiol, 2021, 137: 109610. doi:10.1016/j.ejrad.2021.109610
[24] Wu XJ, Yuan JP, Yang Y, et al. Elevated GABA level in the precuneus and its association with pain intensity in patients with postherpetic neuralgia: an initial proton magnetic resonance spectroscopy study[J]. Eur J Radiol, 2022, 157: 110568. doi:10.1016/j.ejrad.2022.110568
[25] Caspary DM, Ling L, Turner JG, et al. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system[J]. J Exp Biol, 2008, 211(11): 1781-1791. doi:10.1242/jeb.013581
[26] Benedict RHB, Shucard DW, Santa Maria MP, et al. Covert auditory attention generates activation in the rostral/dorsal anterior cingulate cortex[J]. J Cogn Neurosci, 2002, 14(4): 637-645. doi:10.1162/0898929-0260045765
[27] Luan Y, Wang CX, Jiao Y, et al. Abnormal functional connectivity and degree centrality in anterior cingulate cortex in patients with long-term sensorineural hearing loss[J]. Brain Imag Behav, 2020, 14(3): 682-695. doi:10.1007/s11682-018-0004-0
[28] Mulert C, Seifert C, Leicht G, et al. Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making[J]. Neuroimage, 2008, 42(1): 158-168. doi:10.1016/j.neuroimage.2008.04.236
[29] Gunduz-Bruce H, Reinhart RMG, Roach BJ, et al. Glutamatergic modulation of auditory information processing in the human brain[J]. Biol Psychiatry, 2012, 71(11): 969-977. doi:10.1016/j.biopsych.2011.09.031
[30] Knipper M, Singer W, Schwabe K, et al. Disturbed balance of inhibitory signaling links hearing loss and cognition[J]. Front Neural Circuits, 2021, 15: 785603. doi:10.3389/fncir.2021.785603
[31] Kotak VC, Fujisawa S, Lee FA, et al. Hearing loss raises excitability in the auditory cortex[J]. J Neurosci, 2005, 25(15): 3908-3918. doi:10.1523/JNEUROSCI.5169-04.2005
[32] Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, et al. Wistar rats: a forgotten model of age-related hearing loss[J]. Front Aging Neurosci, 2014, 6: 29. doi:10.3389/fnagi.2014.00029
[33] Fitzhugh MC, Hemesath A, Schaefer SY, et al. Functional connectivity of heschl’s gyrus associated with age-related hearing loss: a resting-state fMRI study[J]. Front Psychol, 2019, 10: 2485. doi:10.3389/fpsyg.2019.02485
[34] Tadros SF, D'Souza M, Zettel ML, et al. Glutamate-related gene expression changes with age in the mouse auditory midbrain[J]. Brain Res, 2007, 1127(1): 1-9. doi:10.1016/j.brainres.2006.09.081
[35] Profant O, Škoch A, Balogová Z, et al. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging[J]. Neuroscience, 2014, 260: 87-97. doi:10.1016/j.neuroscience.2013.12.010
[36] Ruan QW, Yu ZW, Zhang WB, et al. Cholinergic hypofunction in presbycusis-related tinnitus with cognitive function impairment: emerging hypotheses[J]. Front Aging Neurosci, 2018, 10: 98. doi:10.3389/fnagi.2018.00098
[1] 张丽霞,李琳. 基于GEO数据库筛选年龄相关性听力损失关键基因的分析研究[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 104-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!