山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (1): 38-41.doi: 10.6040/j.issn.1673-3770.0.2019.528

• 论著 • 上一篇    

听力正常青年人宽频声导抗能量吸收率的初步研究

邢宇轩1,蒋雯1,2,仝悦1,吴扬1,刘稳1,乔月华1,2   

  1. 1.徐州医科大学附属医院 耳鼻咽喉科, 江苏 徐州 221000;
    2.江苏省人工听觉实验室, 江苏 徐州 221000
  • 发布日期:2020-03-06
  • 通讯作者: 刘稳. E-mail: liuwen1972@163.com

A preliminary study on the energy absorbance of wideband acoustic immittance in young adults with normal hearing

XING Yuxuan1, JIANG Wen1,2, TONG Yue1, WU Yang1, LIU Wen1, QIAO Yuehua1,2   

  1. 1. Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China;
    2. Artificial Auditory Laboratory of Jiangsu Province, Xuzhou 221000, Jiangsu, China
  • Published:2020-03-06

摘要: 目的 探讨听力正常青年人宽频声导抗(WAI)能量吸收率(EA)的特点,并比较EA在耳别、性别之间的差异。 方法 选择听力正常青年人60例(120耳),分别行纯音测听、声导抗、宽频声导抗检查,分析检查结果,进行统计学分析。 结果 EA值呈不规则的倒“W”型。左右耳的能量吸收率仅在2 000 Hz频率段有统计学意义,余频率段无统计学意义。在250 Hz~630 Hz之间的女性能量吸收率稍低于男性的能量吸收率,在630 Hz~3 150 Hz之间女性的能量吸收率稍高于男性的能量吸收率,其差异无统计学意义。 结论 正常青年人宽频声导在低频时能量吸收率较低,后迅速增长;中高频能量吸收率值较高。宽频声导抗能量吸收率在耳别、性别之间无明显差异。在临床应用中通过比较宽频声导抗能量吸收率的差异性,可增加中耳疾病诊断的特异度和灵敏度。

关键词: 宽频声导抗, 能量吸收率, 纯音测听

Abstract: Objective To explore characteristics of energy absorbance(EA)of wideband acoustic immittance(WAI)in young adults with normal hearing, and to compare the inter-ear and inter-sex differences in EA. Methods Sixty normal hearing young adults(120 ears)were selected and subjected to pure tone audiometry, acoustic impedance, and wideband acoustic immittance tests. The results were statistically analyzed. Results EA demonstrated an irregularly inverted “W” type of trend. Differences in EA were statistically significant at the frequency of 2 000 Hz, while there were no significant differences with regard to the residual frequency. The EA between 250 Hz and 630 Hz in women were slightly lower than that in men. The EA between 630 Hz and 3 150 Hz in women were slightly higher than that in men; however, the difference was not statistically significant. Conclusion The EA of young adults with normal hearing was particularly low at lower frequencies, and subsequently increase rapidly; furthermore, the EA for mid-high frequencies were relatively higher. WAI did not demonstrate significant differences between ears and both sexes. Comparing the differences in EA could be used to increase the specificity and sensitivity of the diagnosis of middle ear diseases in clinical settings.

Key words: Wideband acoustic immittance, Energy absorbance, Pure-tone audiometers

中图分类号: 

  • R764
[1] 王立伟, 李跃杰, 王延群, 等. 耳声导抗测试技术及在临床中的应用[J]. 国际生物医学工程杂志, 2006, 29(1): 60-64. doi:10.3760/cma.j.issn.1673-4181. 2006.01.017. WANG Liwei, LI Yuejie, WANG Yanqun, et al. Acoustic immittance measurement of ear and its application in clinic[J]. International Journal of Biomedical Engineering, 2006, 29(1): 60-64. doi:10.3760/cma.j.issn.1673-4181. 2006.01.017.
[2] 熊琪. 婴幼儿中耳的宽频声能吸收率特点及其准确性的初步探索[D]. 广州: 广州医科大学, 2015.
[3] 郭倩倩, 邹彬, 姚红兵. 宽频声导抗测试应用研究进展[J]. 听力学及言语疾病杂志, 2017, 25(3): 325-328. doi:10.3969/j.issn.1006-7299. 2017.03.027.
[4] 潘骏良. 宽频声导抗的临床应用研究[D]. 上海:上海交通大学医学院, 2016.
[5] 黄孟捷, 郑芸, 王恺. 正常成人宽频声导抗能量反射的初步研究[J]. 听力学及言语疾病杂志, 2010, 18(5): 433-436. doi:10.3969/j.issn.1006-7299. 2010.05.008. HUANG Mengjie, ZHENG Yun, WANG Kai. Preliminary results of the energy reflectance measurement using wide band tympanometry in Chinese adults with normal hearing[J]. Journal of Audiology and Speech Pathology, 2010, 18(5): 433-436. doi:10.3969/j.issn.1006-7299. 2010.05.008.
[6] Masud SF, Knudson IM, Stankovic KM, et al. Fracture of the incus caused by digital manipulation of the ear canal and its diagnosis using wideband acoustic immittance[J]. And, 2019, 40(2): e115-e118. doi:10.1097/MAO.0000000000002103.
[7] Wang SJ, Hao WY, Xu CX, et al. A study of wideband energy reflectance in patients with otosclerosis: data from a Chinese population[J]. Biomed Res Int, 2019, 2019: 2070548. doi:10.1155/2019/2070548.
[8] Shahnaz N, Bork K. Wideband reflectance norms for Caucasian and Chinese young adults[J]. Ear Hear, 2006, 27(6): 774-788. doi:10.1097/01.aud.0000240568.00816.4a.
[9] Hunter LL, Tubaugh L, Jackson A, et al. Wideband middle ear power measurement in infants and children[J]. J Am Acad Audiol, 2008, 19(4): 309-324. doi:10.3766/jaaa.19.4.4.
[10] Werner LA, Levi EC, Keefe DH. Ear-canal wideband acoustic transfer functions of adults and two- to nine-month-old infants[J]. Ear Hear, 2010, 31(5): 587-598. doi:10.1097/AUD.0b013e3181e0381d.
[11] Feeney MP, Sanford CA. Age effects in the human middle ear: wideband acoustical measures[J]. J Acoust Soc Am, 2004, 116(6): 3546-3558. doi:10.1121/1.1808221.
[12] Mazlan R, Kei J, Ya CL, et al. Age and gender effects on wideband absorbance in adults with normal outer and middle ear function[J]. J Speech Lang Hear Res, 2015, 58(4): 1377-1386. doi:10.1044/2015_JSLHR-H-14-0199.
[13] Shahnaz N, Feeney MP, Schairer KS. Wideband acoustic immittance normative data: ethnicity, gender, aging, and instrumentation[J]. Ear Hear, 2013, 34(Suppl 1): 27S-35S. doi:10.1097/AUD.0b013e31829d5328.
[14] 雷一波, 卢伟, 莫玲燕. 外中耳正常汉族婴幼儿宽频声导抗能量反射值的观察[J]. 中华耳鼻咽喉头颈外科杂志, 2014, 49(6): 441-445. doi:10.3760/cma.j.issn.1673-0860. 2014.06.001. LEI Yibo, LU Wei, MO Lingyan. Wide band typanometry energy reflectance in Chinese infants and children with normal outer and middle ears[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2014, 49(6): 441-445. doi:10.3760/cma.j.issn.1673-0860. 2014.06.001.
[15] Shahnaz N, Cai A, Qi L. Understanding the developmental course of the acoustic properties of the human outer and middle ear over the first 6 months of life by using a longitudinal analysis of power reflectance at ambient pressure[J]. J Am Acad Audiol, 2014, 25(5): 495-511. doi:10.3766/jaaa. 25.5.8.
[16] Hunter LL, Keefe DH, Feeney MP, et al. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants[J]. Hear Res, 2016, 340: 3-14. doi:10.1016/j.heares. 2015.12.014.
[17] Hunter LL, Keefe DH, Feeney MP, et al. Wideband acoustic immittance in children with Down syndrome: prediction of middle-ear dysfunction, conductive hearing loss and patent PE tubes[J]. Int J Audiol, 2017, 56(9): 622-634. doi:10.1080/14992027. 2017.1314557.
[18] 周佳蕾, 孙世冰, 李晓艳. 婴幼儿宽频声导抗测试[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 91-94. doi:10.6040/j.issn.1673-3770.0. 2018.150. ZHOU Jialei, SUN Shibing, LI Xiaoyan. Wideband tympanometry test in infants[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(4): 91-94. doi:10.6040/j.issn.1673-3770.0. 2018.150.
[19] Prieve BA, Vander Werff KR, Preston JL, et al. Identification of conductive hearing loss in young infants using tympanometry and wideband reflectance[J]. Ear Hear, 2013, 34(2):168-178. doi:10.1097/AUD.0b013e31826fe611.
[20] Sanford CA, Brockett JE. Characteristics of wideband acoustic immittance in patients with middle-ear dysfunction[J]. J Am Acad Audiol, 2014, 25(5): 425-440. doi:10.3766/jaaa.25.5.2.
[1] 周佳蕾,孙世冰,李晓艳. 婴幼儿宽频声导抗测试[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 91-94.
[2] 吉晓滨,王 磊,杨桂梅,孟庆翔,谢景华,吴晓钟 . 慢性鼻窦炎患者中耳功能的测定[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 439-442 .
[3] 姜克亮,王 静,柴茂文,牛善利,赵 逊 . 儿童鼻窦炎对咽鼓管与中耳传音功能的影响[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 34-37 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!