山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (2): 115-120.doi: 10.6040/j.issn.1673-3770.0.2019.598

• 病例报告 • 上一篇    下一篇

人工智能在耳鼻咽喉头颈外科的运用及展望

朱志玲1,李松2综述管国芳1审校   

  1. 1.吉林大学第二医院 耳鼻咽喉头颈外科诊疗中心, 吉林 长春 130041;
    2.武汉大学人民医院 耳鼻咽喉头颈外科, 湖北 武汉 430060
  • 发布日期:2020-04-07
  • 通讯作者: 管国芳. E-mail:guan-guo@163.com

Application and prospect of artificial intelligence in otolaryngology

ZHU Zhiling1, LI Song2Overview,GUAN Guofang1Guidance   

  1. 1. Department of Otolaryngology & Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin, China;
    2. Department of Otolaryngology & Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
  • Published:2020-04-07

摘要: 通过对大数据深度学习,近年人工智能技术已逐渐渗透到医学各个领域,实现一定程度应用。虽然耳鼻咽喉头颈外科专业近几年发表相关文献数量急剧增长,但大部分临床医生对于人工智能的研究还比较陌生。介绍人工智能的基本原理,列举、分析其在耳鼻喉科的主要研究情况,探讨目前人工智能技术实际应用的局限,展望未来人工智能技术在耳鼻喉科可能的应用。

关键词: 人工智能, 深度学习, 大数据, 耳鼻喉

Abstract: With the development of artificial intelligence(AI)technology in recent years, it has gradually penetrated into various fields of medicine. Further, through deep learning of big data, AI technology has increasingly been applied in some medical fields. Although the literature on AI in otolaryngology has increased rapidly over recent years, most otolaryngologists are still unfamiliar with this technology. In this study, we will briefly introduce the fundamental principles of AI, enumerate and analyze the main applications in otolaryngology, and discuss the application limitations and possible applications of AI technology in otolaryngology in the future. Through discussion of the problems above, AI technology can be more clearly understood by otolaryngologists.

Key words: Artificial intelligence, Deep Learning, Big data, Otolaryngology

中图分类号: 

  • R762
[1] Prado AS. The fourth industrial revolution tackles plastic surgeons[J]. Plast Reconstr Surg, 2018, 142(5): 821e-822e. doi:10.1097/PRS.0000000000004914.
[2] Bur AM, Shew M, New J. Artificial intelligence for the otolaryngologist: a state of the art review[J]. Otolaryngol Head Neck Surg, 2019, 160(4): 603-611. doi:10.1177/0194599819827507.
[3] Moor J. The Dartmouth college artificial intelligence conference: The next fifty years [A]. Ai Magazine,2006(27):87-89. dol: https://doi.org/10.1609/aimag.v27i4.1911.
[4] Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary[J].Biomed Eng Online, 2014, 13: 94. doi:10.1186/1475-925X-13-94.
[5] Dzobo K, Adotey S, Thomford NE, et al. Integrating artificial and human intelligence: a partnership for responsible innovation in biomedical engineering and medicine[J]. OMICS, 2019. doi:10.1089/omi.2019.0038.
[6] 严律南. 人工智能在医学领域应用的现状与展望[J]. 中国普外基础与临床杂志, 2018, 25(5): 513-514. doi:10.7507/1007-9424.201804033.
[7] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210. doi:10.1001/jama.2017.14585.
[8] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. doi:10.1001/jama.2016.17216.
[9] Esteva A, Kuprel B, Novoa RA, et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 546(7660): 686. doi:10.1038/nature22985.
[10] 王艺培, 闫雯, 张益肇, 等. 精准医疗时代人工智能在医学图像中的应用[J]. 人工智能, 2018, 5(4): 22-29.
[11] Orive G, Santos-Vizcaino E, Pedraz JL, et al. 3D cell-laden polymers to release bioactive products in the eye[J]. Prog Retin Eye Res, 2019, 68: 67-82. doi:10.1016/j.preteyeres.2018.10.002.
[12] Kudo SE, Mori Y, Misawa M, et al. Artificial intelligence and colonoscopy: Current status and future perspectives[J]. Dig Endosc, 2019, 31(4): 363-371. doi:10.1111/den.13340.
[13] Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions[J]. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80. doi:10.1016/S2468-1253(18)30282-6.
[14] Men K, Chen XY, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7: 315. doi:10.3389/fonc.2017.00315.
[15] Wang HF, Zhao TT, Li LC, et al. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation[J]. J Xray Sci Technol, 2018, 26(2): 171-187. doi:10.3233/XST-17302.
[16] Rushil A, Thiagarajan JJ, Bremer T, et al. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data[C] //SPIE Medical Imaging. Proc SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, California, USA, 2016: 978532. doi:10.1117/12.2214876.
[17] Bing D, Ying J, Miao J, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models[J]. Clin Otolaryngol, 2018, 43(3): 868-874. doi:10.1111/coa.13068.
[18] Szaleniec J, Wiatr M, Szaleniec M, et al. Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients[J]. Comput Biol Med, 2013, 43(1): 16-22. doi:10.1016/j.compbiomed.2012.10.003.
[19] Feng GY, Ingvalson EM, Grieco-Calub TM, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci USA, 2018, 115(5): E1022-E1031. doi:10.1073/pnas.1717603115.
[20] Liu GS, Zhu MH, Kim J, et al. ELHnet: a convolutional neural network for classifying cochlear endolymphatic Hydrops imaged with optical coherence tomography[J]. Biomed Opt Express, 2017, 8(10): 4579-4594. doi:10.1364/BOE.8.004579.
[21] Dimauro G, Ciprandi G, Deperte F, et al. Nasal cytology with deep learning techniques[J]. Int J Med Inform, 2019, 122: 13-19. doi:10.1016/j.ijmedinf.2018.11.010.
[22] Chowdhury NI, Smith TL, Chandra RK, et al. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks[J]. Int Forum Allergy Rhinol, 2019, 9(1): 46-52. doi:10.1002/alr.22196.
[23] Li CF, Jing BZ, Ke LR, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies[J]. Cancer Commun(Lond), 2018, 38(1): 59. doi:10.1186/s40880-018-0325-9.
[24] Kournoutas I, Vigo V, Chae R, et al. Acquisition of volumetric models of skull base anatomy using endoscopic endonasal approaches: 3D scanning of deep corridors via photogrammetry[J]. World Neurosurg, 2019, 129: 372-377. doi:10.1016/j.wneu.2019.05.251.
[25] Rattanalappaiboon S, Bhongmakapat T, Ritthipravat P. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images[J]. Comput Biol Med, 2015, 67: 83-94. doi:10.1016/j.compbiomed.2015.09.021.
[26] Geng ZX, Hoffman MR, Jones CA, et al. Three-dimensional analysis of pharyngeal high-resolution manometry data[J]. Laryngoscope, 2013, 123(7): 1746-1753. doi:10.1002/lary.23987.
[27] Kritas S, Dejaeger E, Tack J, et al. Objective prediction of pharyngeal swallow dysfunction in dysphagia through artificial neural network modeling[J]. Neurogastroenterol Motil, 2016, 28(3): 336-344. doi:10.1111/nmo.12730.
[28] Tsui SY, Tsao Y, Lin CW, et al. Demographic and symptomatic features of voice disorders and their potential application in classification using machine learning algorithms[J]. Folia Phoniatr Logop, 2018, 70(3/4): 174-182. doi:10.1159/000492327.
[29] Erdenebayar U, Park JU, Jeong P, et al. Obstructive sleep apnea screening using a piezo-electric sensor[J]. J Korean Med Sci, 2017, 32(6): 893-899. doi:10.3346/jkms.2017.32.6.893.
[30] Witt DR, Chen HJ, Mielens JD, et al. Detection of chronic laryngitis due to laryngopharyngeal reflux using color and texture analysis of laryngoscopic images[J]. J Voice, 2014, 28(1): 98-105. doi:10.1016/j.jvoice.2013.08.015.
[31] Verburg F, Reiners C. Sonographic diagnosis of thyroid cancer with support of AI[J]. Nat Rev Endocrinol, 2019, 15(6): 319-321. doi:10.1038/s41574-019-0204-8.
[32] Li XC, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. Lancet Oncol, 2019, 20(2): 193-201. doi:10.1016/S1470-2045(18)30762-9.
[33] Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3): 677-686. doi:10.1148/radiol.2019182012.
[34] Liang SJ, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning[J]. Eur Radiol, 2019, 29(4): 1961-1967. doi:10.1007/s00330-018-5748-9.
[35] Zhu WT, Huang YF, Zeng L, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2): 576-589. doi:10.1002/mp.13300.
[36] Zhu WL, Kan X. Neural network cascade optimizes microRNA biomarker selection for nasopharyngeal cancer prognosis[J]. PLoS One, 2014, 9(10): e110537. doi:10.1371/journal.pone.0110537.
[37] Stepp WH, Farquhar D, Sheth S, et al. RNA oncoimmune phenotyping of HPV-positive p16-positive oropharyngeal squamous cell carcinomas by nodal status[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(11): 967-975. doi:10.1001/jamaoto.2018.0602.
[38] Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine[J]. JAMA, 2017, 318(6): 517-518. doi:10.1001/jama.2017.7797.
[1] 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119.
[2] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[3] 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131.
[4] 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45.
[5] 邱昌余,周俊,庄德恩,杨晴,陆美萍,程雷. 人工智能技术在辅助耳鼻咽喉科医师了解过敏性鼻炎患者需求中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 88-94.
[6] 郭颖媛,张德军,管国芳,文连姬,张辉,于多娇,马帅帅. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122.
[7] 陈秀梅,宋西成. 颈部坏死性筋膜炎7例并文献复习[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 65-67.
[8] 毕致,肖锋,朱鹃芬. 侧开式喉镜下喉动力系统切除会厌囊肿46例[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 111-112.
[9] 陈艳丽, 朱忠寿, 宋鹏. 电子喉镜下吸凝器切除会厌囊肿37例[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 92-93.
[10] 林均武, 李厚杰, 渠倩, 陈坤. 咽侧间隙巨大骨外骨瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 96-96.
[11] 李丹凤, 陈福权, 石力, 陈俊. 阶梯式多模式融合教学法在耳鼻喉科本科临床教学中的应用[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 77-79.
[12] 王保鑫, 董频, 谢芳, 丁健, 沈斌. 手术治疗颈部神经鞘瘤46例[J]. 山东大学耳鼻喉眼学报, 2014, 28(4): 65-66.
[13] 胡金成, 卢永田. 腭鞘管、翼管与岩骨段颈内动脉的内镜手术应用解剖与进展[J]. 山东大学耳鼻喉眼学报, 2014, 28(4): 100-104.
[14] 孙臻峰,张佳,沈斌,张柏涛,董频. 颈动脉体瘤诊断与处理[J]. 山东大学耳鼻喉眼学报, 2014, 28(2): 62-64.
[15] 郑立友1,李学军2. 耳鼻喉颌面伤合并颅脑损伤500例[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 59-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张晗,黄一飞 . 抗角膜移植排斥的研究进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 84 -87 .
[2] 牛善利,柴茂文,李振秀 . 鼻内镜下鼻甲成形术治疗慢性肥厚性鼻炎60例[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 16 -18 .
[3] 孟庆国,卢永田,范献良 . 杀伤细胞免疫球蛋白样受体基因多态性与鼻咽癌的关联性[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 196 -199 .
[4] 马玉起,孔祥春 . 先天性双侧下唇窦道1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 199 -199 .
[5] 万俐佳,鲁海涛,姜义道,刘 辉,李 琴,佘腊枝 . 改良腭咽成形术治疗阻塞性睡眠呼吸暂停综合征41例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 204 -205 .
[6] 于青青 ,王跃建 . 硬质耳内镜的临床应用进展[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 222 -224 .
[7] 吉晓滨,邓家德,臧林泉,王 磊,谢 军 . 豚鼠变应性鼻炎模型血清组胺的测定[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 228 -230 .
[8] 向登,卢永田,孙焕吉 . 鼻内镜下修补脑脊液鼻漏19例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 234 -236 .
[9] 邱恩惠,李志春,方文旭 . 嗅觉障碍的中西医治疗[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 253 -257 .
[10] 殷国华,钟 笑 . 激光减容术治疗舌扁桃体肥大的远期疗效[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 280 -282 .