山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (5): 63-69.doi: 10.6040/j.issn.1673-3770.0.2021.466

• 论著 • 上一篇    

miR-30-5p通过下调FOXG1表达抑制视网膜母细胞瘤细胞增殖

颜繁诚1,蒋现2,柴一杰3,王昊森4,孟照洋1,汪晓磊1,王艳玲1,冯雪1   

  1. 1.首都医科大学附属北京友谊医院 眼科, 北京 100050;
    2.安徽省第二人民医院 中古友谊眼科中心, 安徽 合肥 230041;
    3.北京大学医学部基础医学院 病理学系, 北京 100191;
    4.清华大学 摩擦学国家重点实验室, 北京 100084
  • 发布日期:2022-09-20
  • 通讯作者: 王艳玲. E-mail:wang_yanling999@126.com; 冯雪. E-mail:fengxue200220@126.com
  • 基金资助:
    国家自然科学基金(81870686);首都卫生发展科研专项项目(2018-1-2021)

miR-30-5p inhibits retinoblastoma cell proliferation by downregulating FOXG1 expression

YAN Fancheng1, JIANG Xian2, CHAI Yijie3, WANG Haosen4, MENG Zhaoyang1, WANG Xiaolei1, WANG Yanling1,   

  1. FENG Xue11. Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
    2. Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China;
    3. Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
    4. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • Published:2022-09-20

摘要: 目的 探讨miR-30-5p对视网膜母细胞瘤细胞增殖的影响及作用机制。 方法 采用实时荧光定量聚合酶链式反应(qRT-PCR)检测miR-30-5p在视网膜母细胞瘤细胞系和人视网膜内皮细胞(HRECs)中的表达。利用TargetScan数据库进行生物信息学分析并预测miR-30-5p靶基因,双荧光素酶报告基因实验验证miR-30-5p与FOXG1的3'UTR结合能力及靶向关系,qRT-PCR和Western blotting分别检测miR-30-5p对FOXG1的mRNA与蛋白表达影响。瞬时转染Y79细胞后,通过CCK8法检测各组Y79细胞的增殖。 结果 与HRECs比较,miR-30-5p在视网膜母细胞瘤细胞中表达降低,FOXG1在视网膜母细胞瘤细胞中表达升高。生物信息学预测结果显示miR-30-5p与FOXG1存在结合位点,qRT-PCR和Western blotting显示miR-30-5p可负调控FOXG1的mRNA和蛋白的表达,双荧光素酶实验结果证实miR-30-5p与FOXG1 3'UTR存在靶向关系。瞬时转染miR-30-5p可升高Y79细胞中miR-30-5p的表达水平,抑制Y79细胞的增殖活力。过表达FOXG1可逆转miR-30-5p上调对Y79细胞增殖的影响。 结论 miR-30-5p通过下调FOXG1表达抑制视网膜母细胞瘤Y79细胞的增殖。

关键词: 视网膜母细胞瘤, miR-30-5p, FOXG1, 细胞增殖, 人视网膜内皮细胞

Abstract: Objective To investigate the effect of microRNA-30-5p(miR-30-5p)on the proliferation of retinoblastoma cells. Methods The expression of miR-30-5p in retinoblastoma cell lines and normal human retinal epithelial cells(HRECs)was determined using quantitative Real-time polymerase chain reaction(qRT-PCR). Bioinformatic analysis and prediction of miR-30-5p target genes were performed using the TargetScan database. Dual-luciferase reporter experiments verified the 3'-UTR binding ability and targeting relationship of miR-30-5p and FOXG1. The effect of miR-30-5p on the mRNA and protein expression of FOXG1 was determined using qRT-PCR and Western blotting, respectively. The effects of the miR-30-5p-FOXG1 pathway on cell proliferation were examined in Y79 cells by transient transfection. Results miR-30-5p expression was decreased and FOXG1 expression was increased in retinoblastoma cells compared with that in HRECs. Bioinformatics prediction results revealed the binding sites of miR-30-5p and FOXG1. qRT-PCR and western blot results showed that miR-30-5p negatively regulated FOXG1 mRNA and protein expression. Dual-luciferase assay confirmed a targeting relationship between miR-30-5p and FOXG1 3'-UTR. Transient transfection of miR-30-5p increased the expression level of miR-30-5p in Y79 cells. Overexpression of FOXG1 reversed the inhibition of Y79 cell proliferation. Conclusion miR-30-5p inhibits the proliferation of Y79 retinoblastoma cells by downregulating FOXG1 expression.

Key words: Retinoblastoma, Y79, miR-30-5p, FOXG1, Cell proliferation, Human retinal epithelial cells

中图分类号: 

  • R774.1
[1] Rodriguez-Galindo C, Orbach DB, VanderVeen D. Retinoblastoma[J]. Pediatr Clin N Am, 2015, 62(1): 201-223. doi:10.1016/j.pcl.2014.09.014.
[2] Jenkinson H. Retinoblastoma: diagnosis and management: the UK perspective[J]. Arch Dis Child, 2015, 100(11): 1070-1075. doi:10.1136/archdischild-2014-306208.
[3] Zhao JY, Li SF, Shi JT, et al. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China[J]. Br J Ophthalmol, 2011, 95(10): 1372-1375. doi:10.1136/bjo.2010.191130.
[4] Gao JG, Zeng JH, Guo B, et al. Clinical presentation and treatment outcome of retinoblastoma in children of South Western China[J]. Medicine, 2016, 95(42): e5204. doi:10.1097/MD.0000000000005204.
[5] Dimaras H, Corson TW. Retinoblastoma, the visible CNS tumor: a review[J]. J Neurosci Res, 2019, 97(1): 29-44. doi:10.1002/jnr.24213.
[6] Qiu YF, Han Q, Lu H, et al. miR-196a targeting LRIG3 promotes the proliferation and migration of cervical cancer cells[J]. Cell Mol Biol(Noisy-le-grand), 2020, 66(7): 180-185.
[7] Zuo QF, Zhang R, Li BS, et al. microRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ[J]. Cell Death Dis, 2015, 6(1): e1623. doi:10.1038/cddis.2014.573.
[8] Zuo YG, Qu CP, Tian YY, et al. The HIF-1/SNHG1/miR-199a-3p/TFAM axis explains tumor angiogenesis and metastasis under hypoxic conditions in breast cancer[J]. Bio Factors, 2021, 47(3): 444-460. doi:10.1002/biof.1702.
[9] Cheng XW, Wei HK, Zhang S, et al. Predictive and prognostic value of an microRNA signature for gastric carcinoma undergoing adjuvant chemotherapy[J]. DNA Cell Biol, 2021, 40(11): 1428-1444. doi:10.1089/dna.2021.0377.
[10] Chen CH, Tang JH, Xu S, et al. miR-30a-5p inhibits proliferation and migration of lung squamous cell carcinoma cells by targeting FOXD1[J]. Biomed Res Int, 2020, 2020: 2547902. doi:10.1155/2020/2547902.
[11] Sun T, Liu ZX, Zhang R, et al. Long non-coding RNA LEF1-AS1 promotes migration, invasion and metastasis of colon cancer cells through miR-30-5p/SOX9 axis[J]. Onco Targets Ther, 2020, 13: 2957-2972. doi:10.2147/OTT.S232839.
[12] Wu WM, Zhao YH, Gao EJ, et al. LncRNA DLEU2 accelerates the tumorigenesis and invasion of non-small cell lung cancer by sponging miR-30a-5p[J]. J Cell Mol Med, 2020, 24(1): 441-450. doi:10.1111/jcmm.14749.
[13] Li L, Kang L, Zhao W, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect[J]. Cancer Lett, 2017, 400: 89-98. doi:10.1016/j.canlet.2017.04.034.
[14] 李勇, 徐卫星, 徐军, 等. miR-101表达上调对视网膜母细胞瘤细胞的增殖及侵袭能力的抑制作用[J]. 眼科新进展, 2018, 38(6): 527-532. doi:10.13389/j.cnki.rao.2018.0123. LI Yong, XU Weixing, XU Jun, et al. Up-regulation of miR-101 inhibits proliferation and invasion of retinoblastoma cells[J]. Recent Advances in Ophthalmology, 2018, 38(6): 527-532. doi:10.13389/j.cnki.rao.2018.0123.
[15] Zuo XR, Fu CJ, Xie J, et al. Hsa_circ_0000527 downregulation suppresses the development of retinoblastoma by modulating the miR-27a-3p/HDAC9 pathway[J]. Curr Eye Res, 2022, 47(1): 115-126. doi:10.1080/02713683.2021.1925697.
[16] 田冰玉, 白淑玮, 康前雁. microRNA-125b对人视网膜母细胞瘤增殖和凋亡作用实验研究[J]. 陕西医学杂志, 2017, 46(11): 1491-1493, 1544. doi:10.3969/j.issn.1000-7377.2017.11.001. TIAN Bingyu, BAI Shuwei, KANG Qianyan. Effect of microRNA-125b on proliferation and apoptosis of human retinobcastoma cells[J]. Shaanxi Medical Journal, 2017, 46(11): 1491-1493, 1544. doi:10.3969/j.issn.1000-7377.2017.11.001.
[17] Zhuang JL, Hao JG, Bu F, et al. microRNA-582-5p regulates cell invasion in bladder cancer through targeting Forkhead Box G1[J]. Pathol Res Pract, 2022, 230: 153752. doi:10.1016/j.prp.2021.153752.
[18] Zhang C, Wu S. microRNA-378a-3p restrains the proliferation of retinoblastoma cells but promotes apoptosis of retinoblastoma cells via inhibition of FOXG1[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 31. doi:10.1167/iovs.61.5.31.
[19] Chen JY, Wu XM, Xing ZK, et al. FOXG1 expression is elevated in glioma and inhibits glioma cell apoptosis[J]. J Cancer, 2018, 9(5): 778-783. doi:10.7150/jca.22282.
[20] Dimaras H, Kimani K, Dimba EAO, et al. Retinoblastoma[J]. Lancet, 2012, 379(9824): 1436-1446. doi:10.1016/S0140-6736(11)61137-9.
[21] 苏杰, 马春梅, 赵丽莉, 等. miR-204通过内质网应激抑制视网膜母细胞瘤生长作用及机制的研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 105-108. doi:10.6040/j.issn.1673-3770.0.2018.132. SU Jie, MA Chunmei, ZHAO Lili, et al. Inhibitory effect of miR-204 and the molecular mechanism of RB via endoplasmic Reticulum stress[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 105-108. doi:10.6040/j.issn.1673-3770.0.2018.132.
[22] Saleh AD, Cheng H, Martin SE, et al. Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer[J]. Clin Cancer Res, 2019, 25(9): 2860-2873. doi:10.1158/1078-0432.ccr-18-0716.
[23] Jiang SX, Miao DZ, Wang MH, et al. miR-30-5p suppresses cell chemoresistance and stemness in colorectal cancer through USP22/Wnt/β-catenin signaling axis[J]. J Cell Mol Med, 2019, 23(1): 630-640. doi:10.1111/jcmm.13968.
[24] Adesina AM, Nguyen Y, Guanaratne P, et al. FOXG1 is overexpressed in hepatoblastoma[J]. Hum Pathol, 2007, 38(3): 400-409. doi:10.1016/j.humpath.2006.09.003.
[25] Chan DW, Liu VWS, To RMY, et al. Overexpression of FOXG1 contributes to TGF-beta resistance through inhibition of p21WAF1/CIP1 expression in ovarian cancer[J]. Br J Cancer, 2009, 101(8): 1433-1443. doi:10.1038/sj.bjc.6605316.
[26] 耿蕾. 转录因子FOXG1促进结直肠癌侵袭和转移的作用研究[D]. 西安: 第四军医大学, 2017.
[27] 章凡, 张献全, 钱程. Foxg1抑制肝癌细胞血管形成及其机制[J]. 第三军医大学学报, 2018, 40(6): 494-499. doi:10.16016/j.1000-5404.201711040. ZHANG Fan, ZHANG Xianquan, QIAN Cheng. Foxg1 inhibits angiogenesis in hepatocellular carcinoma in vitro[J]. Journal of Third Military Medical University, 2018, 40(6): 494-499. doi:10.16016/j.1000-5404.201711040.
[28] Zhang J, Yang Y, Yang T, et al. Double-negative feedback loop between microRNA-422a and forkhead box(FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis[J]. Hepatology, 2015, 61(2): 561-573. doi:10.1002/hep.27491.
[1] 苏杰,马春梅,赵丽莉,刘岩,邵宏超. miR-204通过内质网应激抑制视网膜母细胞瘤生长作用及机制的研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 105-108.
[2] 李国彬,张占成,王新颜. 上调miR-200b对人喉癌Hep-2细胞增殖、迁移和侵袭能力的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 53-57.
[3] 许元腾,陈瑞庆,林功标,方秀玲,俞舒娟,梁晓华,张榕. RNAi沉默PDCD4基因对人喉癌Hep-2细胞增殖及β-catenin表达的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 110-114.
[4] 李大伟,董频,高尚. 喉鳞癌中P糖蛋白表达与细胞增殖、凋亡及预后的关系[J]. 山东大学耳鼻喉眼学报, 2011, 25(4): 8-12.
[5] 陈金辉,陶泽璋. 端粒酶逆转录酶和细胞增殖核抗原在喉鳞癌组织及细胞中的表达意义[J]. 山东大学耳鼻喉眼学报, 2011, 25(3): 5-8.
[6] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263-264 .
[7] 梅 芳,陈志钧,徐再兴 . 小儿视网膜母细胞瘤17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 25-26 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!