山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (5): 77-82.doi: 10.6040/j.issn.1673-3770.0.2021.142
• 综述 • 上一篇
唐翡然,孔香云综述申家泉审校
TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance
摘要: 相干光层析血管成像术通过对视网膜微血管网络进行分层定量分析,使得青光眼血管变化的临床监测成为可能。近年来,许多研究发现视盘旁浅层毛细血管密度,尤其是放射状视盘周围毛细血管层的血管密度具有较高的青光眼诊断效能,与青光眼性视神经损伤之间的相关性较好,能够辅助青光眼结构和功能检查,从而进一步提高不同类型青光眼在不同阶段的诊治水平。
中图分类号:
[1] Rao HL, Pradhan ZS, Suh MH, et al. Optical Coherence Tomography Angiography in Glaucoma[J]. J Glaucoma, 2020, 29(4): 312-321. doi:10.1097/IJG.0000000000001463. [2] Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. doi:10.1016/j.ophtha.2014.05.013. [3] Gariano RF, Iruela-Arispe ML, Hendrickson AE. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human[J]. Invest Ophthalmol Vis Sci, 1994, 35(9): 3442-3455. [4] Alterman M, Henkind P. Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma[J]. Br J Ophthalmol, 1968, 52(1): 26-31. doi:10.1136/bjo.52.1.26. [5] Spaide RF, Klancnik JM, Cooney MJ. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography[J]. JAMA Ophthalmology, 2015, 133(1). doi:10.1001/jamaophthalmol.2014.3616. [6] Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. doi:10.1016/j.preteyeres.2017.11.003. [7] 梁倩倩, 杨庭骅, 赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142. doi:10.6040 /j.issn.1673-3770.0.2018.364. LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion[J]. J Otolaryngol Ophthalmol Shandong Univ, 2019, 33(2): 139-142. doi:10.6040 /j.issn.1673-3770.0.2018.364. [8] Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma[J]. JAMA Ophthalmology, 2015, 133(9). doi:10.1001/jamaophthalmol.2015.2225. [9] Campbell JP, Zhang M, Hwang TS, et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography[J]. Sci Rep, 2017, 7: 42201. doi:10.1038/srep42201. [10] Mo S, Phillips E, Krawitz BD, et al. Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging[J]. PLoS One, 2017, 12(1): e0169385. doi:10.1371/journal.pone.0169385. [11] Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: What we know and what we don't know[J]. Prog Retin Eye Res, 2017, 57: 26-45. doi:10.1016/j.preteyeres.2016.12.003. [12] Mansoori T, Sivaswamy J, Gamalapati JS, et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma[J]. J Glaucoma, 2017, 26(5): 438-443. doi:10.1097/IJG.0000000000000649. [13] Yu PK, Cringle SJ, Yu DY. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina[J]. Exp Eye Res, 2014, 129: 83-92. doi:10.1016/j.exer.2014.10.020. [14] Mammo Z, Heisler M, Balaratnasingam C, et al. Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma, glaucoma suspect, and normal eyes[J]. Am J Ophthalmol, 2016, 170: 41-49. doi:10.1016/j.ajo.2016.07.015. [15] Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 451-459. doi:10.1167/iovs.15-18944. [16] Sihota R, Saxena R, Taneja N, et al. Topography and fluorescein angiography of the optic nerve head in primary open-angle and chronic primary angle closure glaucoma[J]. Optom Vis Sci, 2006, 83(7): 520-526. doi:10.1097/01.opx.0000225910.51370.02. [17] Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. doi:10.1364/OE.20.004710. [18] Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proc Natl Acad Sci U S A, 2015, 112(18): E2395-E2402. doi:10.1073/pnas.1500185112. [19] Pinhas A, Linderman R, Mo S, et al. A method for age-matched OCT angiography deviation mapping in the assessment of disease- related changes to the radial peripapillary capillaries[J]. PLoS One, 2018, 13(5): e0197062. doi:10.1371/journal.pone.0197062. [20] Zhang Y, Zhang S, Wu C, et al. Optical coherence tomography angiography of the macula in patients with primary angle closure glaucoma[J]. Ophthalmic Res, 2021, 64(3):440-446. doi:10.1159/000512756. [21] Rabiolo A, Gelormini F, Sacconi R, et al. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography[J]. PLoS One, 2018, 13(10): e0205773. doi:10.1371/journal.pone.0205773. [22] Xiaolei Wang, Junyi Chen, Xiangmei Kong, et al. Quantification of retinal microvascular density using optic coherence tomography angiography in primary angle closure disease[J]. Curr Eye Res,2021,46(7):1018-1024. doi:10.1080/02713683.2020.1849728. [23] Venugopal JP, Rao HL, Weinreb RN, et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes[J]. Br J Ophthalmol, 2018, 102(3): 352-357. doi:10.1136/bjophthalmol-2017-310637. [24] Liu L, Edmunds B, Takusagawa HL, et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. Am J Ophthalmol, 2019, 207: 99-109. doi:10.1016/j.ajo.2019.05.024. [25] Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma[J]. Br J Ophthalmol, 2017, 101(8): 1066-1070. doi:10.1136/bjophthalmol-2016-309377. [26] Bekkers A, Borren N, Ederveen V, et al. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions[J]. Acta Ophthalmol, 2020. doi:10.1111/aos.14392. [27] Bowd C, Zangwill LM, Weinreb RN, et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma[J]. Am J Ophthalmol, 2017, 175: 37-44. doi:10.1016/j.ajo.2016.11.010. [28] Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma[J]. Ophthalmology, 2019, 126(7): 980-988. doi:10.1016/j.ophtha.2019.03.003. [29] Richter GM, Sylvester B, Chu Z, et al. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance[J]. Clin Ophthalmol, 2018, 12: 2285-2296. doi:10.2147/OPTH.S179816. [30] 莫逆, 钟华. OCTA在原发性开角型青光眼中的应用[J]. 国际眼科杂志, 2020, 20(5): 791-795. doi:10.3980/j.issn.1672-5123.2020.5.10. MO Ni, ZHONG Hua. Application of OCTA in primary open angle glaucoma[J]. Int Eye Sci, 2020, 20(5): 791-795. doi:10.3980/j.issn.1672-5123.2020.5.10. [31] Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges[J]. Curr Opin Ophthalmol, 2013, 24(2): 96-101. doi:10.1097/ICU.0b013e32835cef31. [32] Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons[J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 741-748. [33] Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J]. Ophthalmology, 2016, 123(12): 2498-2508. doi:10.1016/j.ophtha.2016.08.041. [34] Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect[J]. Ophthalmology, 2017, 124(5): 709-719. doi:10.1016/j.ophtha.2017.01.004. [35] Jo YH, Sung KR, Yun SC. The Relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5862-5867. doi:10.1167/iovs.18-25423. [36] Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma[J]. Am J Ophthalmol, 2017, 177: 106-115. doi:10.1016/j.ajo.2017.02.020. [37] Mansoori T, Balakrishna N. Peripapillary vessel density and retinal nerve fiber layer thickness in patients with unilateral primary angle closure glaucoma with superior hemifield defect[J]. J Curr Glaucoma Pract, 2019, 13(1): 21-27. doi:10.5005/jp-journals-10078-1247. [38] Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[J]. Am J Ophthalmol, 2017, 182: 194-200. doi:10.1016/j.ajo.2017.07.024. [39] Moghimi S, SafiZadeh M, Xu BY, et al. Vessel density and retinal nerve fibre layer thickness following acute primary angle closure[J]. Br J Ophthalmol, 2020, 104(8): 1103-1108. doi:10.1136/bjophthalmol-2019-314789. [40] Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in glaucoma of different entities as measured with optical coherence tomography angiography[J]. Clin Ophthalmol, 2019, 13: 2527-2534. doi:10.2147/OPTH.S230192. [41] Lin YH, Huang SM, Yeung L, et al. Correlation of visual field with peripapillary vessel density through optical coherence tomography angiography in normal-tension glaucoma[J]. Transl Vis Sci Technol, 2020, 9(13): 26. doi:10.1167/tvst.9.13.26. [42] Scripsema NK, Garcia PM, Bavier RD, et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT611-OCT620. doi:10.1167/iovs.15-18945. [43] Suwan Y, Geyman LS, Fard MA, et al. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus POAG and healthy controls: an OCTA study[J]. Asia Pac J Ophthalmol(Phila), 2018, 7(2): 84-89. doi:10.22608/APO.2017318. [44] Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis[J]. Br J Ophthalmol, 2019, 103(11): 1677-1684. doi:10.1136/bjophthalmol-2018-313461. |
[1] | 张敏综述李艳审校. OCT及OCTA在阿尔茨海默病诊断中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 157-162. |
[2] | 李萱, 黄映湘. 25例虹膜新生血管发生原因探讨[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 41-47. |
[3] | 秦书琪,王露萍,姜彬,王艳玲. 眼缺血综合征并发新生血管性青光眼一例并文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 53-55. |
[4] | 徐婧,瞿远珍,梁小芳,杨柳,汤洋. 视神经脊髓炎谱系疾病患者黄斑区及视盘周围视网膜血管参数变化特征[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 69-74. |
[5] | 刘瑞宝,赵颖,郭明璐,段钰,吴艳霞,路雪婧. 自噬及其在青光眼中的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 158-161. |
[6] | 刘琳,郑华,谌绍林,段宣初. 干细胞移植对大鼠青光眼模型视神经保护作用及安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 138-144. |
[7] | 滕兴波,曹智,孙海霞,刘宪金,杨伟舟,朱艳,朱玉广. GRP94、EIF2α在原发型闭角性青光眼小梁中的作用研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 115-118. |
[8] | 谢洪彬,杨美娜,陈青山,刘旭阳,樊宁. IgG4相关性眼病伴继发性青光眼病例分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 99-102. |
[9] | 高雪,郝琳琳,刘少华,张晗. 两种人工晶体计算公式预测闭角型青光眼合并白内障患者超声乳化手术后屈光度准确性的比较[J]. 山东大学耳鼻喉眼学报, 2018, 32(1): 68-71. |
[10] | 赵栋栋, 王艺, 高建鲁. 原发性开角型青光眼易感基因研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 92-96. |
[11] | 许晓. Ex-PRESS引流器植入术治疗青光眼的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 90-93. |
[12] | 王越,柯敏,韩芳芳,王文欢,翁鸿. EX-PRESS引流器植入术与小梁切除术治疗开角型青光眼有效性和安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 104-111. |
[13] | 童尧,郑岩,周雅丽,王艺晓,赵培泉,汪朝阳. 各型青光眼患者眼内TNF-α及IP-10水平及其相关性分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 103-106. |
[14] | 杨洪玲. 青光眼患者生活质量评估及相关因素的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 94-97. |
[15] | 李冬梅. 长期使用前列腺素药物对青光眼患者睑板腺功能及角膜结构的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 89-92. |
|