山东大学耳鼻喉眼学报 ›› 2018, Vol. 32 ›› Issue (3): 96-104.doi: 10.6040/j.issn.1673-3770.0.2017.363
梁峥琰, 邓玉琴, 陶泽璋
LIANG Zhengyan, DENG Yuqin, TAO Zezhang
摘要: 近年来,母亲过敏和环境暴露对免疫成熟的影响受到广泛关注。出生前后是免疫成熟的关键时期,过敏母亲后代脐带血中免疫成分发生改变,其具体机制尚在研究之中。同时,母亲环境暴露可能对胎儿免疫功能产生长久的正面或负面影响,该综述总结了近些年出现的暴露因素及其对免疫成熟的影响。
中图分类号:
[1] 程雷. 变应性鼻炎的诊断和治疗[J]. 山东大学耳鼻喉眼学报, 2013, 27(2):1-4. [2] Warner JA, Jones AC, Miles EA, et al. Prenatal sensitization[J]. Pediatr Allergy Immunol, 1996, 7(9 Suppl):98-101. [3] Ruiz RG, Richards D, Kemeny DM, et al. Neonatal IgE: a poor screen for atopic disease[J]. Clin Exp Allergy, 1991, 21(4):467-472. [4] Cookson WO, Sharp PA, Faux JA, et al. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q[J]. Lancet, 1989, 1(8650):1292-1295. [5] Warner JA, Miles EA, Jones AC, et al. Is deficiency of interferon gamma production by allergen triggered cord blood cells a predictor of atopic eczema?[J]. Clin Exp Allergy, 1994, 24(5):423-430. [6] Warner JO, Warner JA, Miles EA, et al. Reduced interferon-gamma secretion in neonates and subsequent atopy[J]. Lancet, 1994, 344(8935):1516-1516. [7] Holt PG. Environmental factors and primary T-cell sensitisation to inhalant allergens in infancy: reappraisal of the role of infections and air pollution[J]. Pediatr Allergy Immunol, 1995, 6(1):1-10. [8] 王慎梅. 不同配方奶和母亲过敏体质对早产儿外周血中Th1/Th2/Tr1细胞的影响[D]. 上海:上海交通大学, 2015. [9] 谢龙山, 余保平, 谢桂珍,等. 尘螨过敏母亲对新生儿Th1/Th2平衡功能的影响[J]. 实用医学杂志, 2005, 21(13):1410-1411. [10] Hrdý J, Novotná O, Kocourková I, et al. Gene expression of subunits of the IL-12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers[J]. Folia Biol(Praha), 2014, 60(2):74-82. [11] Abelius MS, Jedenfalk M, Ernerudh J, et al. Pregnancy modulates the allergen-induced cytokine production differently in allergic and non-allergic women[J]. Pediatr Allergy Immunol, 2017 Sep 11. DOI: 10.1111/pai.12802. [12] Schaub B, Campo M, He H, et al. Neonatal immune responses to TLR2 stimulation: influence of maternal atopy on Foxp3 and IL-10 expression[J]. Respir Res, 2006, 7(1):40. [13] Schaub B, Liu J, Hoppler S, et al. Impairment of T-regulatory cells in cord blood of atopic mothers[J]. Allergy Clin Immunol, 2008, 121(6):1491-1499. [14] Boyle RJ, Morley R, Mah LJ, et al. Reduced membrane bound CD14 expression in the cord blood of infants with a family history of allergic disease[J]. Clin Exp Allergy, 2009, 39(7):982-990. [15] Boyle RJ, Morley R, Mah LJ, et al. Reduced membrane bound CD14 expression in the cord blood of infants with a family history of allergic disease[J]. Clin Exp Allergy, 2009, 39(7):982-990. [16] Gold DR, Bloomberg GR, Cruikshank WW, et al. Parental characteristics, somatic fetal growth and season of birth influence innate and adaptive cord blood cytokine responses[J].J Allergy Clin Immunol, 2009, 124(5):1078-1087. [17] Schaub B, Campo M, He H, et al. Neonatal immune responses to TLR2 stimulation: influence of maternal atopy on Foxp3 and IL-10 expression[J]. Respir Res, 2006,7(1):40-40. [18] 梁音, 王丽慧, 杨炯. 屋尘螨过敏症母亲脐血中调节性T细胞数量上存在的缺陷[J]. 武汉大学学报(医学版), 2012, 33(2):283-288. LIANG Yin, WANG Lihui, YANG Jiong. Abnormal Regulatory T Cell Numbers in Cord Blood from Atopic Mothers Sensitized to House Dust Mite[J]. Med J Wuhan Univ, 2012, 33(2):283-288. [19] Björkstén B, Aït-Khaled N, Innes AM, et al. Global analysis of breast feeding and risk of symptoms of asthma, rhinoconjunctivitis and eczema in 6-7 year old children: ISAAC Phase Three[J]. Allergol Immunopathol(Madr), 2011, 39(6):318-325. [20] 邓莎莎, 陈铮, 彭咏梅. 不同过敏体质母亲母乳中PUFAs与免疫因子的差异及相互性研究[J]. 中国儿童保健杂志, 2016, 24(4):344-349. DENG Shasha, CHEN Zheng, PENG Yongmei. Relationship and differences of polyunsaturated fatty acids and cytokines in human breast milk between allergic and non-allergic mothers[J]. Chin J Child Health Care, 2016, 24(4):344-349. [21] 张海邻, 倪丽艳,包其郁,等.CD14基因多态性与儿童特应性疾病的相关性[J].中华儿科杂志,2007,45(2):105-108. ZHANG Hailin, NI Liyan, BAO Qiyu, et al. Association of CD14 gene polymorphism with atopic diseases in Chinese Han ethnic group children[J]. Chin J Pediatr, 2007, 45(2):105-108. [22] Jones CA, Warner JA, Warner JO. Fetal swallowing of IgE[J]. Lancet, 1998, 351(9119):1895-1895. [23] Fuenfer MM, Herson VC, Raye JR, et al. The effect of betamethasone on neonatal neutrophil chemotaxis[J]. Pediatr Res, 1987, 22(2):150-153. [24] Elenkov IJ. Glucocorticoids and the Th1/Th2 balance[J]. Ann N Y Acad Sci,2004, 1024(10):138-146. [25] Veru F, Dancause K, Laplante DP, et al. Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: project ice storm[J]. Physiol Behav, 2015, 144:137-145. [26] Tseng WN, Chen CC, Yu HR, et al. Antenatal dexamethasone exposure in preterm infants is associated with allergic diseases and the mental development index in children[J]. Int J Environ Res Public Health, 2016, 13(12):1206-1206. [27] Alikhani-Koopaei R, Fouladkou F, Frey FJ, et al. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression[J]. J Clin Invest, 2004, 114(8):1146-1157. [28] Christiaens I, Zaragoza DB, Guilbert L, et al. Inflammatory processes in preterm and term parturition[J]. J Reprod Immunol, 2008, 79(1):50-57. [29] Ghaemmaghami P, Dainese SM, La Marca R, et al. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome[J]. Dev Psychobiol, 2014, 56(4):734-747. [30] O'Donnell KJ, Bugge Jensen A, Freeman L, et al. Maternal prenatal anxiety and downregulation of placental 11β-HSD2[J]. Psychoneuroendocrinol, 2012, 37(6):818-826. [31] Welberg LA, Thrivikraman KV, Plotsky PM. Chronic maternal stress inhibits the capacity to up-regulate placental 11betahydroxysteroid dehydrogenase type 2 activity[J]. J Endocrinol, 2005, 186(3):7-12. [32] Sharma S, Kho AT, Chhabra D, et al. Glucocorticoid genes and the developmental origins of asthma susceptibility and treatment response[J]. Am J Respir Cell Mol Biol, 2015, 52(5):543-553. [33] Rozance PJ, Seedorf GJ, Brown A, et al. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(6):860-871. [34] Lu Y, Ho R, Lim TK, et al. Neuropeptide Y may mediate psychological stress and enhance TH2 inflammatory response in asthma[J]. J Allergy Clin Immunol, 2015, 135(4):1061-1063. [35] Kindlund K, Thomsen SF, Stensballe LG, et al. Birth weight and risk of asthma in 3-9-year-old twins: exploring the fetal origins hypothesis[J]. Thorax, 2010, 65(2):146-149. [36] Been JV, Lugtenberg MJ, Smets E, et al. Preterm birth and childhood wheezing disorders: a systematic review and Meta-analysis[J]. Plos Med, 2014, 11(1):e1001596. [37] Rosas-Salazar C, Ramratnam SK, Brehm JM, et al. Prematurity, atopy, and childhood asthma in Puerto Ricans[J]. J Allergy Clin Immunol, 2014, 133(2):357-362. [38] Oberlander TF, Weinberg J, Papsdorf M, et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene(NR3C1)and infant cortisol stress responses[J]. Epigenetics, 2008, 3(2):97-106. [39] Yehuda R, Daskalakis NP, Lehrner A, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring[J]. Am J Psychiatry, 2014, 171(8):872-880. [40] Radtke KM, Ruf M, Gunter HM, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor[J]. Transl Psychiatry, 2011, 1(7):e21. [41] Oberlander TF, Weinberg J, Papsdorf M, et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene(NR3C1)and infant cortisol stress responses[J]. Epigenetics, 2008, 3(2):97-106. [42] Yehuda R, Flory JD, Bierer LM, et al. Lower methylation of glucocorticoid receptor gene promoter 1 F, in peripheral blood of veterans with posttraumatic stress disorder[J]. Biol Psychiatry, 2015, 77(4):356-364. [43] Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(2):141-148. [44] Okuyama K, Dobashi K, Miyasaka T, et al. The involvement of glucocorticoids in psychological stress-induced exacerbations of experimental allergic asthma[J]. Int Arch Allergy Immunol, 2014, 163(4):297-306. [45] Steffensen FH, Sørensen HT, Gillman MW, et al. Low birth weight and preterm delivery as risk factors for asthma and atopic dermatitis in young adult males[J]. Epidemiology, 2000, 11(2):185-188. [46] Zijlmans MA, Korpela K, Riksen-Walraven JM, et al. Maternal prenatal stress is associated with the infant intestinal microbiota[J]. Psychoneuroendocrinology, 2015, 53:233-245. [47] Sonnenschein-van der Voort AM, Jaddoe VW, Moll HA, et al. Influence of maternal and cord blood C-reactive protein on childhood respiratory symptoms and eczema[J]. Pediatr Allergy Immunol, 2013, 24(5):469-475. [48] Cooper PJ, Chico ME, Amorim LD, et al. Effects of maternal geohelminth infections on allergy in early childhood[J]. J Allergy Clin Immunol, 2016, 137(3):899-906. [49] Solano ME, Holmes MC, Mittelstadt PR, et al. Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity[J]. Semin Immunopathol, 2016, 38(6):739-763. [50] Mpairwe H, Ndibazza J, Webb EL, et al. Maternal hookworm modifies risk factors for childhood eczema: results from a birth cohort in Uganda[J]. Pediatr Allergy Immunol, 2014, 25(5):481-488. [51] Pesce G, Marcon A, Marchetti P, et al. Febrile and gynecological infections during pregnancy are associated with a greater risk of childhood eczema[J]. Pediatr Allergy Immunol, 2014, 25(2):159-165. [52] Hsieh VC, Liu CC, Hsiao YC, et al. Risk of allergic rhinitis, allergic conjunctivitis, and eczema in children born to mothers with gum inflammation during pregnancy[J]. Plos One, 2016, 11(5):e0156185. [53] Murphy VE, Mattes J, Powell H, et al. Respiratory viral infections in pregnant women with asthma are associated with wheezing in the first 12 months of life[J]. Pediatr Allergy Immunol, 2014, 25(2):151-158. [54] Pesce G, Marcon A, Marchetti P, et al. Febrile and gynecological infections during pregnancy are associated with a greater risk of childhood eczema[J]. Pediatr Allergy Immunol, 2014, 25(2):159-165. [55] Stokholm J, Sevelsted A, Bønnelykke K, et al. Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study[J]. Lancet Respir Med, 2014, 2(8):631-637. [56] Lapin B, Piorkowski J, Ownby D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children[J]. Ann Allergy Asthma Immunol, 2015, 114(3):203-207. [57] Dharmage SC, Lodge CJ, Lowe AJ, et al. Antibiotics and risk of asthma: a debate that is set to continue[J]. Clin Exp Allergy, 2015, 45(1):6-8. [58] Metsälä J, Lundqvist A, Virta LJ, et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood[J]. Clin Exp Allergy, 2015, 45(1):137-145. [59] Black PN. Anti-inflammatory effects of macrolide antibiotics[J]. Eur Respir J,1997, 10(5):971-972. [60] Sugihara E. Effect of macrolide antibiotics on neutrophil function in human peripheral blood[J]. Kansenshogaku Zasshi, 1997, 71(4):329-336. [61] Ishida Y, Abe Y, Harabuchi Y. Effects of macrolides on antigen presentation and cytokine production by dendritic cells and T lymphocytes[J]. Int J Pediatr Otorhinolaryngol, 2007, 71(2):297-305. [62] Kuo CH, Kuo HF, Huang CH, et al. Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis[J]. J Microbiol Immunol Infect, 2013, 46(5):320-329. [63] Schaub B, Liu J, Hoppler S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells[J]. Allergy Clin Immunol, 2009, 123(4):774-782. [64] Russell SL, Gold MJ, Willing BP, et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma[J]. Gut Microbes, 2013, 4(2):158-164. [65] Ege MJ, Bieli C, Frei R, et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children[J]. J Allergy Clin Immunol, 2006,117(4): 817-823. [66] von Mutius E. Maternal farm exposure/ingestion of unpasteurized cow's milk and allergic disease[J]. Curr Opin Gastroenterol, 2012, 28(6):570-576. [67] Schaub B, Liu J, Höppler S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells[J]. J Allergy Clin Immunol, 2009, 123(4):774-782. [68] Schuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells[J]. Science, 2015, 349(6252):1106-1110. [69] Luder E, Melnik TA, Dimaio M. Association of being overweight with greater asthma symptoms in inner city black and Hispanic children[J]. J Pediatr, 1998, 132(4):699-703. [70] Ekstr(¨overo)m S, Magnusson J, Kull I, et al. Maternal body mass index in early pregnancy and offspring asthma, rhinitis and eczema up to 16 years of age[J]. Clin Exp Allergy, 2015, 45(1):283-291. [71] van de Pavert SA, Ferreira M, Domingues RG, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity[J]. Nature, 2014, 508(7494):123-127. [72] Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells[J]. Curr Allergy Asthma Rep, 2011, 11(1):29-36. [73] 魏真真, 陈威威, 王磊, 等. 孕期维生素D缺乏对子鼠Th1/Th2细胞免疫功能的影响[J]. 上海交通大学学报(医学版), 2016, 36(9):1278-1281. WEI Zhenzhen, CHEN Weiwei, WANG Lei, et al. Effects of maternal vitamin D deficiency on the immune function of Th1/Th2 in offspring rats[J]. J Shanghai Jiaotong Univ(Med Sci), 2016, 36(9):1278-1281. [74] 陈凌燕, 周小建, 李霞, 等. 孕期哺乳期大鼠补充维生素D3对子代大鼠哮喘模型肺组织维生素D受体表达的影响[J]. 临床儿科杂志, 2012, 30(5):470-473. CHEN Lingyan, ZHOU Xiaojian, LI Xia, et al. Vitamin D3 supplementation in pregnant and lactating rats on vitamin D receptor expression in the lung of baby rats with asthma[J]. J Clin Pediatr, 2012, 30(5):470-473. [75] Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma[J]. Eur J Pharmacol, 2013, 701(1-3):131-143. [76] Trerotola M, Relli V, Simeone P, et al. Epigenetic inheritance and the missing heritability[J]. Human Genomics, 2015, 9(1):17. [77] Li YF, Langholz B, Salam MT, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma[J]. Chest, 2005, 127(4):1232-41. [78] Magnus MC, Haberg SE, Karlstad Ø, et al. Grandmother's smoking when pregnant with the mother and asthma in the grandchild: the norwegian mother and child cohort study[J]. Thorax, 2015,70(3):237-243. [79] Miller LL, Henderson J, Northstone K, et al. Do grandmaternal smoking patterns influence the etiology of childhood asthma?[J] Chest, 2014, 145(6):1213-1218. [80] Lodge CJ, Bråbäck L, Lowe AJ, et al. Grandmaternal smoking increases asthma risk in grandchildren: a nationwide Swedish cohort[J]. Clin Exp Allergy, 2017 Sep 19. doi: 10.1111/cea.13031. [81] Noakes PS, Hale J, Thomas R, et al. Maternal smoking is associated with impaired neonatal toll-like-receptor-mediated immune responses[J]. Eur Respir J, 2006, 28(4):721-729. [82] Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?[J]. Adv Nutr, 2014, 5(6):779-784. [83] Bode L. Human milk oligosaccharides: every baby needs a sugar mama[J]. Glycobiology, 2012, 22(90):1147-1162. [84] Bailey MT, Lubach GR, Coe CL. Prenatal stress alters bacterial colonization of the gut in infant monkeys[J]. J Pediatr Gastroenterol Nutr, 2004, 38(4):414-421. [85] Faa G, Gerosa C, Fanni D, et al. Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy[J]. J Matern Fetal Neonatal Med, 2013, 26(S2):35-43. [86] Westerbeek EA, van den Berg A, Lafeber HN, et al. The intestinal bacterial colonisation in preterm infants: a review of the literature[J]. Clin Nutr, 2006, 25(3):361-368. [87] Bisgaard H, Nan L, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age[J]. J Allergy Clin Immunol, 2011, 128(3):646-652. [88] Dominguezbello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26):11971-11975. [89] Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months[J]. CMAJ, 2013, 185(5):385-394. [90] Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section[J]. Gut, 2014, 63(4):559-566. [91] Penders J, Gerhold K, Stobberingh EE, et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood[J]. J Allergy Clin Immunol, 2013, 132(3):601-607. [92] Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease[J]. Nat Immunol, 2014, 15(4):307-310. [93] Cho CE, Norman M. Cesarean section and development of the immune system in the offspring[J]. Am J Obstet Gynecol, 2013, 208(4):249-254. [94] Molloy EJ, O'Neill AJ, Grantham JJ, et al. Labor promotes neonatal neutrophil survival and lipopolysaccharide responsiveness[J]. Pediatr Res, 2004, 56(1):99-103. [95] Weinberger B, Vetrano AM, Syed K, et al. Influence of labor on neonatal neutrophil apoptosis, and inflammatory activity[J]. Pediatr Res, 2007, 61(1):572-577. [96] Yektaei-Karin E, Moshfegh A, Lundahl J, et al. The stress of birth enhances in vitro, spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn[J]. Pediatr Allergy Immunol, 2007, 18(8):643-651. [97] 陈红波. 分娩发动前后孕妇蜕膜及外周血中NK、NKT细胞生物学特性的研究[D]. 合肥:安徽医科大学, 2010. [98] Liao SL, Tsai MH, Yao TC, et al. Caesarean Section is associated with reduced perinatal cytokine response, increased risk of bacterial colonization in the airway, and infantile wheezing[J]. Sci Reports, 2017, 7(1):9053. [99] 王慧, 吴长有. 白细胞介素10免疫调节功能的研究进展[J]. 国际免疫学杂志, 2010, 33(4):315-319. WANG Hui, WU Changyou. Advances in the study of the immunological functions of Interleukin-10[J]. Inter J Immunol, 2010, 33(4):315-319. [100] Shen CM, Lin SC, Niu DM, et al. Labour increases the surface expression of two Toll-like receptors in the cord blood monocytes of healthy term newborns[J]. Acta Paediatrica, 2009, 98(6):959-962. [101] Belderbos ME, Houben ML, van Bleek GM, et al. Breastfeeding modulates neonatal innate immune responses: a prospective birth cohort study[J]. Pediatr Allergy Immunol, 2012, 23(1):65-74. [102] Malamitsi-Puchner A, Protonotariou E, Boutsikou T, et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period[J]. Early Hum Dev, 2005, 81(4):387-392. [103] Garofalo R, Chheda S, Mei F, et al. Interleukin-10 in human milk[J]. Pediatr Res, 1995, 37(1):444-449. [104] Faria AM, Weiner HL. Oral tolerance and TGF-beta-producing cells[J]. Inflamm Allergy Drug Targets, 2006, 5(3):179-190. [105] JJ Yang, GC Pang. The immunological components in human milk and their effect on the immune development of infants[J]. Food Sci, 2006, 27(10):641-644. [106] Ustundag B, Yilmaz E, Dogan Y, et al. Levels of cytokines(IL-1, IL-2, IL-6, IL-8, TNF-)and trace elements(Zn, Cu)in breast milk from mothers of preterm and term infants[J]. Mediators Inflamm,2005(6):331-336. [107] Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease[J]. Trends Immunol, 2015, 36(11):684-696. [108] Eiwegger T, Stahl B, Schmitt J, et al. Human milk derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro[J]. Pediatr Res, 2004, 56(4):536-540. [109] Hawkes JS, Neumann MA, Gibson RA. The effect of breast feeding on lymphocyte subpopulations in healthy term infants at 6 months of age[J]. Pediatr Res, 1999, 45(1):648-651. [110] Boccolini CS, Boccolini PM, de Carvalho ML, et al. Exclusive breastfeeding and diarrhea hospitalization patterns between 1999 and 2008 in Brazilian State Capitals[J]. Cien Saude Colet, 2012, 17(7):1857-1863. [111] Boccolini CS, Carvalho ML, Oliveira MI, et al. Breastfeeding can prevent hospitalization for pneumonia, among children under 1 year old[J]. J Pediatr(Rio J), 2011, 87(5):399-404. [112] Goenka A, Kollmann TR. Development of immunity in early life[J]. J Infect, 2015, 71(S1):S112-S120. [113] Turfkruyer M, Verhasselt V. Breast milk and its impact on maturation of the neonatal immune system[J]. Curr Opin Infect Dis, 2015, 28(3):199-206. [114] Gomez-Gallego C, Garcia-Mantrana I, Salminen S, et al. The human milk microbiome and factors influencing its composition and activity[J]. Semin Fetal Neonatal Med, 2016, 21(6):400-405. |
[1] | 廖礼兵,刘绮明,宗凌,翟锦明,张建国. 42例耳鸣伴听觉过敏患者特征分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 31-36. |
[2] | 史丽,赵莉,张红萍. 变应性鼻炎的长期抗炎治疗[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 9-12. |
[3] | 贺艳艳,肖淑烽,董彩蓉. 荧光素眼底血管造影后不良反应的影响因素[J]. 山东大学耳鼻喉眼学报, 2012, 26(5): 75-76. |
[4] | 陈芳,李晓艳. T-bet、TGF-β在过敏性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 83-86. |
[5] | 薛飞1 ,李泽卿1 ,江满杰1 ,程友1 ,王秋萍1 ,辛晓峰2 . 支气管哮喘合并过敏性鼻炎的流行病学 调查及相关性分析[J]. 山东大学耳鼻喉眼学报, 2009, 23(1): 54-56 . |
|