山东大学耳鼻喉眼学报 ›› 2019, Vol. 33 ›› Issue (5): 158-161.doi: 10.6040/j.issn.1673-3770.0.2018.606
• 综述 • 上一篇
Ruibao LIU,Ying ZHAO,Minglu GUO,Yu DUAN,Yanxia WU,Xuejing LU()
摘要:
自噬是细胞通过降解更新细胞内异常的蛋白质、糖原、受损细胞器等累积物,并释放出对细胞有利的小分子物质进行二次利用,以维持细胞内稳态的一种细胞代谢过程。自噬调控异常与人体多种疾病相关,包括肿瘤、免疫性疾病、神经退行性疾病等。近年来发现,自噬参与青光眼疾病的生理病理过程,在其促进神经节细胞的生存和死亡方面仍存在一定的争议。故深入研究自噬的发生及机制,对全面了解自噬对青光眼疾病发生发展有着重要意义。
中图分类号:
1 |
方灏, 吴昌静, 李斯慧, 等 . 自噬与视网膜疾病[J]. 解剖科学进展, 2016, 22(4): 429-431. doi:10.16695/j.cnki. 1006-2947.2016.04.020 .
doi: 10.16695/j.cnki.1006-2947.2016.04.020 |
FANG Hao , WU Changjing , LI Sihui , et al . Autophagy and retinal diseases[J]. Progress of Anatomical Sciences, 2016, 22(4): 429-431. doi:10.16695/j.cnki.1006-2947.2016.04.020 .
doi: 10.16695/j.cnki.1006-2947.2016.04.020 |
|
2 |
Zhang HB , Sun NX , Liang HC ,et al . 17-Alpha-estradiol ameliorating oxygen-induced retinopathy in a murine model[J]. Jpn J Ophthalmol,2012,56(4):407-415. doi: 10.1007/s10384-012-0136-5 .
doi: 10.1007/s10384-012-0136-5 |
3 |
Olzscha H , Schermann SM , Woerner AC , et al . Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions[J]. Cell, 2011, 144(1): 67-78. doi:10.1016/j.cell.2010.11.050 .
doi: 10.1016/j.cell.2010.11.050 |
4 |
Murrow L , Debnath J . Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease[J]. Annu Rev Pathol, 2013, 8: 105-137. doi:10.1146/annurev-pathol-020712-163918 .
doi: 10.1146/annurev-pathol-020712-163918 |
5 |
Feng YC , He D , Yao ZY , et al . The machinery of macroautophagy[J]. Cell Res, 2014, 24(1): 24-41. doi:10.1038/cr.2013.168 .
doi: 10.1038/cr.2013.168 |
6 |
Yu L , Chen Y , Tooze SA . Autophagy pathway: Cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215. doi:10.1080/15548627.2017.1378838 .
doi: 10.1080/15548627.2017.1378838 |
7 |
Stolz A , Ernst A , Dikic I . Cargo recognition and trafficking in selective autophagy[J]. Nat Cell Biol, 2014, 16(6): 495-501. doi:10.1038/ncb2979 .
doi: 10.1038/ncb2979 |
8 |
冯会超 . 细胞自噬与神经退行性疾病机制的研究进展[J]. 临床与病理杂志, 2018, 38(3): 659-663. doi:10.3978/j.issn.2095-6959.2018.03.033 .
doi: 10.3978/j.issn.2095-6959.2018.03.033 |
FENG Huichao . Advances in mechanisms of autophagy and neurodegenerative diseases[J]. International Journal of Pathology and Clinical Medicine, 2018, 38(3): 659-663. doi:10.3978/j.issn.2095-6959.2018.03.033 .
doi: 10.3978/j.issn.2095-6959.2018.03.033 |
|
9 |
Randhawa R , Sehgal M , Singh TR , et al . Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy[J].Gene,2015, 562(1): 40-49. doi:10.1016/j.gene.2015.02.056 .
doi: 10.1016/j.gene.2015.02.056 |
10 |
Wang Y , Xu K , Zhang HB , et al . Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: a brief literature review presenting a novel hypothesis in glaucoma pathology[J]. Mol Med Rep, 2014, 10(3): 1179-1183. doi:10.3892/mmr. 2014. 2346 .
doi: 10.3892/mmr. 2014. 2346 |
11 |
Weinreb RN , Aung T , Medeiros FA . The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. doi:10.1001/jama. 2014. 3192 .
doi: 10.1001/jama. 2014. 3192 |
12 |
Cho KJ , Kim JH , Park HY , et al . Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion[J]. Brain Res, 2011, 1403: 67-77. doi:10.1016/j.brainres. 2011.06.005 .
doi: 10.1016/j.brainres. 2011.06.005 |
13 |
Li R , Jin YP , Li Q , et al . MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma[J]. Biomed Pharmacother, 2018, 100: 1-7. doi:10.1016/j.biopha.2018.01.044 .
doi: 10.1016/j.biopha.2018.01.044 |
14 |
Park HY , Kim JH , Park CK . Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model[J]. Cell Death Dis, 2012, 3: e290. doi:10.1038/cddis.2012.26 .
doi: 10.1038/cddis.2012.26 |
15 |
Wang Y , Huang CQ , Zhang HB , et al . Autophagy in glaucoma: Crosstalk with apoptosis and its implications[J]. Brain Research Bulletin, 2015, 117: 1-9. doi:10.1016/j.brainresbull.2015.06.001 .
doi: 10.1016/j.brainresbull.2015.06.001 |
16 |
Deng SF , Wang M , Yan ZC , et al . Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model[J]. PLoS One, 2013, 8(10): e77100. doi:10.1371/journal.pone.0077100 .
doi: 10.1371/journal.pone.0077100 |
17 |
Piras A , Gianetto D , Conte D , et al . Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure[J]. PLoS One, 2011, 6(7): e22514. doi:10.1371/journal.pone.0022514 .
doi: 10.1371/journal.pone.0022514 |
18 |
Hirt J , Porter K , Dixon A , et al . Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model[J]. Cell Death Discov, 2018, 4: 14. doi:10.1038/s41420-018-0077-y .
doi: 10.1038/s41420-018-0077-y |
19 |
Stamer WD , Acott TS . Current understanding of conventional outflow dysfunction in glaucoma[J]. Curr Opin Ophthalmol, 2012, 23(2): 135-143. doi:10.1097/ICU.0b013e32834ff23e .
doi: 10.1097/ICU.0b013e32834ff23e |
20 |
Porter K , Nallathambi J , Lin YZ , et al . Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis[J]. Autophagy, 2013, 9(4): 581-594. doi:10.4161/auto.23568 .
doi: 10.4161/auto.23568 |
21 |
Porter K , Hirt J , Stamer WD , et al . Autophagic dysregulation in glaucomatous trabecular meshwork cells[J]. Biochim Biophys Acta, 2015, 1852(3): 379-385. doi:10.1016/j.bbadis.2014.11.021 .
doi: 10.1016/j.bbadis.2014.11.021 |
22 |
Stothert AR , Fontaine SN , Sabbagh JJ , et al . Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma[J]. Exp Eye Res, 2016, 144: 38-45. doi:10.1016/j.exer.2015.08.017 .
doi: 10.1016/j.exer.2015.08.017 |
23 |
Kunchithapautham K , Rohrer B . Autophagy is one of the multiple mechanisms active in photoreceptor degeneration[J]. Autophagy, 2007, 3(1): 65-66. doi:10.4161/auto.3431 .
doi: 10.4161/auto.3431 |
24 |
Park HL , Kim JH , Park CK . Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas[J]. Sci Rep, 2018, 8(1): 13321. doi:10.1038/s41598-018-30165-7 .
doi: 10.1038/s41598-018-30165-7 |
25 |
Kaarniranta K , Kauppinen A , Blasiak J , et al . Autophagy regulating kinases as potential therapeutic targets for age-related macular degeneration[J]. Future Med Chem, 2012, 4(17): 2153-2161. doi:10.4155/fmc. 12. 169 .
doi: 10.4155/fmc. 12. 169 |
26 |
Rodríguez-Muela N , Germain F , Mariño G , et al . Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice[J]. Cell Death Differ, 2012, 19(1): 162-169. doi:10.1038/cdd.2011.88 .
doi: 10.1038/cdd.2011.88 |
27 |
Su WR , Li ZH , Jia Y , et al . Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model[J]. PLoS One, 2014, 9(6): e99719. doi:10.1371/journal.pone.0099719 .
doi: 10.1371/journal.pone.0099719 |
28 |
Fingert JH , Robin AL , Stone JL , et al . Copy number variations on chromosome 12q14 in patients with normal tension glaucoma[J]. Hum Mol Genet, 2011, 20(12): 2482-2494. doi:10.1093/hmg/ddr123 .
doi: 10.1093/hmg/ddr123 |
29 |
Fingert JH . Primary open-angle glaucoma genes[J]. Eye (Lond), 2011, 25(5): 587-595. doi:10.1038/eye. 2011.97 .
doi: 10.1038/eye. 2011.97 |
30 |
Alward WL , Fingert JH , Coote MA, et al . Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A)[J]. N Engl J Med, 1998, 338(15): 1022-1027. doi:10.1056/NEJM-199804093381503 .
doi: 10.1056/NEJM-199804093381503 |
31 |
Tucker BA, Solivan-Timpe F , Roos BR , et al . Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma[J]. J Stem Cell Res Ther, 2014, 3(5): 161. doi:10.4172/2157-7633.1000161 .
doi: 10.4172/2157-7633.1000161 |
[1] | 刘琳,郑华,谌绍林,段宣初. 干细胞移植对大鼠青光眼模型视神经保护作用及安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 138-144. |
[2] | 滕兴波,曹智,孙海霞,刘宪金,杨伟舟,朱艳,朱玉广. GRP94、EIF2α在原发型闭角性青光眼小梁中的作用研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 115-118. |
[3] | 苏杰,艾昕,马春梅,杨馥宇,黄帅. 急性高眼压大鼠外侧膝状体神经元细胞自噬与凋亡的关系[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 68-71. |
[4] | 谢洪彬,杨美娜,陈青山,刘旭阳,樊宁. IgG4相关性眼病伴继发性青光眼病例分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 99-102. |
[5] | 高雪,郝琳琳,刘少华,张晗. 两种人工晶体计算公式预测闭角型青光眼合并白内障患者超声乳化手术后屈光度准确性的比较[J]. 山东大学耳鼻喉眼学报, 2018, 32(1): 68-71. |
[6] | 赵栋栋, 王艺, 高建鲁. 原发性开角型青光眼易感基因研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 92-96. |
[7] | 许晓. Ex-PRESS引流器植入术治疗青光眼的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 90-93. |
[8] | 王越,柯敏,韩芳芳,王文欢,翁鸿. EX-PRESS引流器植入术与小梁切除术治疗开角型青光眼有效性和安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 104-111. |
[9] | 童尧,郑岩,周雅丽,王艺晓,赵培泉,汪朝阳. 各型青光眼患者眼内TNF-α及IP-10水平及其相关性分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 103-106. |
[10] | 杨洪玲. 青光眼患者生活质量评估及相关因素的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 94-97. |
[11] | 李冬梅. 长期使用前列腺素药物对青光眼患者睑板腺功能及角膜结构的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 89-92. |
[12] | 张金陵,蔡晓岚,李学忠,冯昕,齐君君,刘大昱. 自噬相关基因Atg3、Ambra1与慢性单纯性鼻窦炎、鼻息肉及鼻息肉伴发哮喘的相关性研究[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 50-55. |
[13] | 柴雪荣, 张士玺, 陶钰, 申家泉. 玻璃体腔注射雷珠单抗联合小梁切除术及全视网膜光凝治疗新生血管性青光眼的效果评价[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 72-75. |
[14] | 韩萍, 许加凤, 胡凯. 小梁切除联合巩膜层间反折小梁组织垫入术治疗青光眼临床分析[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 74-75. |
[15] | 颜世龙, 杨明, 胡尊霞, 刘志高, 李镜海. 超声乳化白内障吸除术治疗晶体溶解性青光眼7例临床分析[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 79-81. |
|