山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (3): 19-25.doi: 10.6040/j.issn.1673-3770.1.2020.025

• 专家笔谈 • 上一篇    下一篇

甲状旁腺自荧光显影技术应用研究

宋西成1,郑海涛2   

  1. 青岛大学附属烟台毓璜顶医院, 1. 耳鼻咽喉头颈外科;
    2. 甲状腺外科, 山东 烟台 264000
  • 发布日期:2020-06-29
  • 通讯作者: 宋西成. E-mail:songxicheng@126.com
  • 基金资助:
    泰山学者发展计划(ts20190991);烟台市科技计划项目(2017ws098)

A review of autofluorescence imaging of the parathyroid gland

SONG Xicheng1, ZHENG Haitao2   

  1. Yantai Yuhuangding Hospital Affiliated to Qingdao University, 1. Department of Otorhinolaryngology & Head and Neck Surgery;
    2. Department of Thyroid Surgery, Yantai 264000, Shandong, China
  • Published:2020-06-29

摘要: 甲状旁腺损伤引起的暂时性和永久性功能减退目前仍不可避免。近年发现甲状旁腺含特有的荧光物质,机制未明。目前在甲状旁腺实时定位中可以使用两种自体荧光探查设备(Fluobeam影像系统、PTeye纤维探针接触式系统),用于甲状旁腺的术中定位和保护。在切除标本中挽救性检出甲状旁腺是该技术的优势,甲状旁腺和甲状腺自体荧光强度比值分别是1.23~7.71。甲状腺术中自体荧光甲状旁腺探查比例76.3%~98.0%,在甲状旁腺术中探查准确性达到90.5%~99.0%。甲状旁腺的自体荧光技术非侵入性,优点是准确实时费时少,不使用染料作对比剂。

关键词: 甲状旁腺, 旁腺保护, 自体荧光, 应用进展, 综述

Abstract: The temporary and permanent dysfunction caused by parathyroid injury are inevitable. The parathyroid contains a special fluorescent substance, although its mechanism is not clear. At present, two kinds of autofluorescence detection equipment(FLUOBEAM ® imaging system, PTeye fiber probe contact system)can be used for real-time localization of the parathyroid gland for intraoperative localization and protection. The major advantage of this technique is that is allows detection of the parathyroid in excised specimens. The ratios of autofluorescence intensities of the parathyroid and thyroid are 1.23 and 7.71, respectively. The proportion of autofluorescence parathyroid identification sensitivity was 76.3-98.0% and the accuracy was 90.5-99.0%. The parathyroid gland autofluorescence technique is non-invasive, less time-consuming, provides accurate real-time information, and does not use dye as a contrast agent.

Key words: Parathyroid glands, parathyroid protection, autofluorescence, progress, review

中图分类号: 

  • R739.91
[1] Thomas G, McWade MA, Paras C, et al. Developing a clinical prototype to guide surgeons for intraoperative label-free identification of parathyroid glands in real time[J]. Thyroid, 2018, 28(11): 1517-1531. doi:10.1089/thy.2017.0716.
[2] Christou N, Mathonnet M. Complications after total thyroidectomy[J]. J Visc Surg, 2013, 150(4): 249-256. doi:10.1016/j.jviscsurg.2013.04.003.
[3] Caron NR, Sturgeon C, Clark OH. Persistent and recurrent hyperparathyroidism[J]. Curr Treat Options Oncol, 2004, 5(4): 335-345. doi:10.1007/s11864-004-0024-4.
[4] McWade MA, Sanders ME, Broome JT, et al. Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection[J]. Surgery, 2016, 159(1): 193-202. doi:10.1016/j.surg.2015.06.047.
[5] Almquist M, Ivarsson K, Nordenström E, et al. Mortality in patients with permanent hypoparathyroidism after total thyroidectomy[J]. Br J Surg, 2018, 105(10): 1313-1318. doi:10.1002/bjs.10843.
[6] Kahramangil B, Dip F, Benmiloud F, et al. Detection of parathyroid autofluorescence using near-infrared imaging: a multicenter analysis of concordance between different surgeons[J]. Ann Surg Oncol, 2018, 25(4): 957-962. doi:10.1245/s10434-018-6364-2.
[7] Dudley NE. Methylene blue for rapid identification of the parathyroids[J]. Br Med J, 1971, 3(5776): 680-681. doi:10.1136/bmj.3.5776.680.
[8] Antakia R, Gayet P, Guillermet S, et al. Near infrared fluorescence imaging of rabbit thyroid and parathyroid glands[J]. J Surg Res, 2014, 192(2): 480-486. doi:10.1016/j.jss.2014.05.061.
[9] Kahramangil B, Berber E. The use of near-infrared fluorescence imaging in endocrine surgical procedures[J]. J Surg Oncol, 2017, 115(7): 848-855. doi:10.1002/jso.24583.
[10] Zaidi N, Bucak E, Okoh A, et al. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during surgery for primary hyperparathyroidism[J]. J Surg Oncol, 2016, 113(7): 771-774. doi:10.1002/jso.24240.
[11] van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue[J]. Head Neck, 2014, 36(6): 853-858. doi:10.1002/hed.23384.
[12] Das K, Stone N, Kendall C, et al. Raman spectroscopy of parathyroid tissue pathology[J]. Lasers Med Sci, 2006, 21(4): 192-197. doi:10.1007/s10103-006-0397-7.
[13] Paras C, Keller M, White L, et al. Near-infrared autofluorescence for the detection of parathyroid glands[J]. J Biomed Opt, 2011, 16(6): 067012. doi:10.1117/1.3583571.
[14] Solórzano CC, Thomas G, Baregamian N, et al. Detecting the near infrared autofluorescence of the human parathyroid[J]. Ann Surg, 2019: 2. doi:10.1097/sla.0000000000003700.
[15] Thomas G, Squires MH, Metcalf T, et al. Imaging or fiber probe-based approach? assessing different methods to detect near infrared autofluorescence for intraoperative parathyroid identification[J]. J Am Coll Surg, 2019, 229(6): 596-608.e3. doi:10.1016/j.jamcollsurg.2019.09.003.
[16] Ladurner R, Al Arabi N, Guendogar U, et al. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery[J]. Ann R Coll Surg Engl, 2018, 100(1): 33-36. doi:10.1308/rcsann.2017.0102.
[17] McWade MA, Paras C, White LM, et al. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging[J]. J Clin Endocrinol Metab, 2014, 99(12): 4574-4580. doi:10.1210/jc.2014-2503.
[18] Falco J, Dip F, Quadri P, et al. Cutting edge in thyroid surgery: autofluorescence of parathyroid glands[J]. J Am Coll Surg, 2016, 223(2): 374-380. doi:10.1016/j.jamcollsurg.2016.04.049.
[19] Serra C, Silveira L. Near-infrared irradiation of the thyroid area: effects on weight development and thyroid and parathyroid secretory patterns[J]. Lasers Med Sci, 2020, 35(1): 107-114. doi:10.1007/s10103-019-02800-w.
[20] Ladurner R, Sommerey S, Arabi NA, et al. Intraoperative near-infrared autofluorescence imaging of parathyroid glands[J]. Surg Endosc, 2017, 31(8): 3140-3145. doi:10.1007/s00464-016-5338-3.
[21] Kose E, Rudin AV, Kahramangil B, et al. Autofluorescence imaging of parathyroid glands: an assessment of potential indications[J]. Surgery, 2020, 167(1): 173-179. doi:10.1016/j.surg.2019.04.072.
[22] Kose E, Chomsky-Higgins KH, Kahramangil B, et al. Objective identification of parathyroid tissue using autofluorescence during thyroidectomy: a quantitative analysis[J]. J Am Coll Surg, 2018, 227(4): e119-e120. doi:10.1016/j.jamcollsurg.2018.08.323.
[23] De Leeuw F, Breuskin I, Abbaci M, et al. Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: a feasibility study[J]. World J Surg, 2016, 40(9): 2131-2138. doi:10.1007/s00268-016-3571-5.
[24] Kim SW, Song SH, Lee HS, et al. Intraoperative real-time localization of normal parathyroid glands with autofluorescence imaging[J]. J Clin Endocrinol Metab, 2016, 101(12): 4646-4652. doi:10.1210/jc.2016-2558.
[25] Kim SW, Lee HS, Ahn YC, et al. Near-infrared autofluorescence image-guided parathyroid gland mapping in thyroidectomy[J]. J Am Coll Surg, 2018, 226(2): 165-172. doi:10.1016/j.jamcollsurg.2017.10.015.
[26] Benmiloud F, Rebaudet S, Varoquaux A, et al. Impact of autofluorescence-based identification of parathyroids during total thyroidectomy on postoperative hypocalcemia: a before and after controlled study[J]. Surgery, 2018, 163(1): 23-30. doi:10.1016/j.surg.2017.06.022.
[27] Ladurner R, Lerchenberger M, Al Arabi N, et al. Parathyroid autofluorescence-how does it affect parathyroid and thyroid surgery? A 5 year experience[J]. Molecules, 2019, 24(14): E2560. doi:10.3390/molecules24142560.
[28] Liu JS, Wang XX, Wang R, et al. Near-infrared auto-fluorescence spectroscopy combining with Fisher's linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy[J]. BMC Surg, 2020, 20(1): 4. doi:10.1186/s12893-019-0670-x.
[29] Dip F, Falco J, Verna S, et al. Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy[J]. J Am Coll Surg, 2019, 228(5): 744-751. doi:10.1016/j.jamcollsurg.2018.12.044.
[30] Kahramangil B, Berber E. Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy[J]. Gland Surg, 2017, 6(6): 644-648. doi:10.21037/gs.2017.09.04.
[31] Lerchenberger M, Al Arabi N, Gallwas JKS, et al. Intraoperative near-infrared autofluorescence and indocyanine green imaging to identify parathyroid glands: a comparison[J]. Int J Endocrinol, 2019, 2019: 4687951. doi:10.1155/2019/4687951.
[32] Kose E, Kahramangil B, Aydin H, et al. Heterogeneous and low-intensity parathyroid autofluorescence: Patterns suggesting hyperfunction at parathyroid exploration[J]. Surgery, 2019, 165(2): 431-437. doi:10.1016/j.surg.2018.08.006.
[33] DiMarco A, Chotalia R, Bloxham R, et al. Autofluorescence in parathyroidectomy: signal intensity correlates with serum calcium and parathyroid hormone but routine clinical use is not justified[J]. World J Surg, 2019, 43(6): 1532-1537. doi:10.1007/s00268-019-04929-9.
[34] Squires MH, Jarvis R, Shirley LA, et al. Intraoperative parathyroid autofluorescence detection in patients with primary hyperparathyroidism[J]. Ann Surg Oncol, 2019, 26(4): 1142-1148. doi:10.1245/s10434-019-07161-w.
[35] Serra C, Silveira L, Canudo A, et al. Parathyroid identification by autofluorescence-preliminary report on five cases of surgery for primary hyperparathyroidism[J]. BMC Surg, 2019, 19(1): 120. doi:10.1186/s12893-019-0590-9.
[36] Wolf HW, Grumbeck B, Runkel N. Intraoperative verification of parathyroid glands in primary and secondary hyperparathyroidism using near-infrared autofluorescence(IOPA)[J]. Updates Surg, 2019, 71(3): 579-585. doi:10.1007/s13304-019-00652-1.
[37] Squires MH, Shirley LA, Shen CL, et al. Intraoperative autofluorescence parathyroid identification in patients with multiple endocrine neoplasia type 1[J]. JAMA Otolaryngol Head Neck Surg, 2019,145(10):897-902. doi:10.1001/jamaoto.2019.1987.
[38] Benmiloud F, Godiris-Petit G, Gras R, et al. Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: results of the PARAFLUO multicenter randomized clinical trial[J]. JAMA Surg, 2019,155(2):106-112. doi:10.1001/jamasurg.2019.4613.
[39] DiMarco A, Chotalia R, Bloxham R, et al. Does fluoroscopy prevent inadvertent parathyroidectomy in thyroid surgery?[J]. Ann R Coll Surg Engl, 2019, 101(7): 508-513. doi:10.1308/rcsann.2019.0065.
[40] Shinden Y, Nakajo A, Arima H, et al. Intraoperative identification of the parathyroid gland with a fluorescence detection system[J]. World J Surg, 2017, 41(6): 1506-1512. doi:10.1007/s00268-017-3903-0.
[41] McWade MA, Thomas G, Nguyen JQ, et al. Enhancing parathyroid gland visualization using a near infrared fluorescence-based overlay imaging system[J]. J Am Coll Surg, 2019, 228(5): 730-743. doi:10.1016/j.jamcollsurg.2019.01.017.
[42] Mannoh EA, Thomas G, Solórzano CC, et al. Intraoperative assessment of parathyroid viability using laser speckle contrast imaging[J]. Sci Rep, 2017, 7(1): 14798. doi:10.1038/s41598-017-14941-5.
[43] Mondal SB, Gao SK, Zhu N, et al. Optical see-through cancer vision goggles enable direct patient visualization and real-time fluorescence-guided oncologic surgery[J]. Ann Surg Oncol, 2017, 24(7): 1897-1903. doi:10.1245/s10434-017-5804-8.
[44] Mondal SB, Gao SK, Zhu N, et al. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping[J]. Sci Rep, 2015, 5: 12117. doi:10.1038/srep12117.
[1] 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124.
[2] 邓敏鑫,欧维健,刘双信,任庆宜,严培楷,吴嘉慧,康竞,张思毅,葛平江. 继发性甲旁亢甲状旁腺全切术后嗓音变化研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 28-30.
[3] 肖西立,聂渝晓,陈婕. 国内近10年干眼相关研究——基于Citespace的可视化分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 86-97.
[4] 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122.
[5] 汪茂林, 李菊兰, 鲜昆仑. 继发性甲旁亢甲状旁腺切除不同移植方案疗效研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 114-119.
[6] 钟琦. 甲状腺手术中甲状旁腺的识别和保护[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 9-11.
[7] 黄天桥,姜晓丹,车飞,黄沂传,孙彦,张念凯,李慎玲,陈志俊,李薇. 术后第一天甲状旁腺激素水平对甲状腺全切术后甲状旁腺功能恢复的预测价值[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 89-91.
[8] 谢慧. 变应性鼻炎的中医治疗[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 22-25.
[9] 魏伯俊. 原发性甲状旁腺功能亢进的诊治[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 32-35.
[10] 陈隽,王家东. 继发性甲状旁腺机能亢进的诊疗进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 36-39.
[11] 刘新杰,许楠,蔡炜,高恒元,罗民,邓慧仪,周冬仙. 术中甲状旁腺激素测定评判继发性甲状旁腺功能亢进手术成功的标准构想[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 65-70.
[12] 王贝贝,杨洪,欧爱华. 亚甲蓝在继发性甲旁亢手术中对甲状旁腺的定位作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 71-74.
[13] 王志远, 张革化. 慢性鼻-鼻窦炎小鼠模型及应用现状[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 76-78.
[14] 王晓勇, 宋西成. 鼻内镜下上颌窦良性病变的手术入路[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 90-92.
[15] 冯云, 杨大章, 程靖宁, 王成元, 刘丹丹. 甲状腺外科手术操作与手术并发症的相关性[J]. 山东大学耳鼻喉眼学报, 2015, 29(1): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .