山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (2): 114-118.doi: 10.6040/j.issn.1673-3770.0.2019.538
王艳杰,程冯丽综述赵长青审校
WANG Yanjie, CHENG FengliOverview,ZHAO ChangqingGuidance
摘要: 目的 随着计算机技术不断进步、新型材料大量问世及制作成本下降,3D打印作为当今制造业前沿技术现已广泛应用于各种医疗过程尤其是外科专业,在耳鼻咽喉科领域目前主要应用于假体制造及植入、术前规划、模型重建和技能训练及教学等方面。通过定制个性化植入物及手术器械缩短手术时间、降低手术成本,通过术前规划及模型演练降低手术副损伤。近年来,组织工程学、活体组织器官的复合打印技术作为3D打印的潜在应用也得到了广泛的探索。论文主要讨论3D打印技术在耳鼻咽喉科领域的扩大应用及研究前景。
中图分类号:
[1] Hsieh TY, Cervenka B, Dedhia R, et al. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(7): 574-579. doi:10.1001/jamaoto. 2018.0473. [2] Reighard CL, Green K, Powell AR, et al. Development of a high fidelity subglottic stenosis simulator for laryngotracheal reconstruction rehearsal using 3D printing[J]. Int J Pediatr Otorhinolaryngol, 2019, 124: 134-138. doi:10.1016/j.ijporl. 2019.05.027. [3] Hong CJ, Giannopoulos AA, Hong BY, et al. Clinical applications of three-dimensional printing in otolaryngology-head and neck surgery: a systematic review[J]. Laryngoscope, 2019, 129(9): 2045-2052. doi:10.1002/lary. 27831. [4] He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Sci Rep, 2014, 4: 6973. doi:10.1038/srep06973. [5] Choi YD, Kim Y, Park E. Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing[J]. Aesthet Surg J, 2017, 37(9): 988-998. doi:10.1093/asj/sjx046. [6] Xu YH, Fan F, Kang N, et al. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing[J]. Plast Reconstr Surg, 2015, 135(2): 451-458. doi:10.1097/PRS.0000000000000856. [7] Visser J, Melchels FP, Jeon JE, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres[J]. Nat Commun, 2015, 6: 6933. doi:10.1038/ncomms7933. [8] Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering[J]. ACS Appl Mater Interfaces, 2019, 11(37): 33684-33696. doi:10.1021/acsami. 9b11644. [9] Park JH, Park JY, Nam IC, et al. Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration[J]. Acta Biomater, 2015, 25: 56-64. doi:10.1016/j.actbio. 2015.07.014. [10] Chang JW, Park SA, Park JK, et al. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report[J]. Artif Organs, 2014, 38(6): E95-E105. doi:10.1111/aor.12310. [11] Zhou GD, Jiang HY, Yin ZQ, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction[J]. EBioMedicine, 2018, 28: 287-302. doi:10.1016/j.ebiom. 2018.01.011. [12] 吴昆旻, 吴建, 李泽卿, 等. 3D打印辅助上颌骨切除术后缺损重建[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 29-32, 36. doi:10.6040/j.issn.1673-3770.0.2016.368. WU Kunmin, WU Jian, LI Zeqing, et al. Application of three-dimensional printing technique in assisting reconstruction after maxillectomy[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(6): 29-32, 36. doi:10.6040/j.issn.1673-3770.0.2016.368. [13] 张海, 刘钢, 佟小光, 等. 3D打印技术在复杂鼻颅底肿瘤手术中的应用[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 53(10): 780-784. doi:10.3760/cma.j.issn.1673-0860. 2018.10.012. ZHANG Hai. Application of three-dimensional printing technology in the surgical treatment of nasal skull base tumor[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2018, 53(10): 780-784. doi:10.3760/cma.j.issn.1673-0860. 2018.10.012. [14] Muelleman TJ, Peterson J, Chowdhury NI,et al. Individualized surgical approach planning for petroclival tumors using a 3D printer[J]. J Neurol Surg B Skull Base. 2016,77(3):243-248. doi: 10.1055/s-0035-1566253. [15] Grau S, Kellermann S, Faust M, et al. Repair of cerebrospinal fluid leakage using a transfrontal, radial adipofascial flap: an individual approach supported by three-dimensional printing for surgical planning[J]. World Neurosurg. 2018,110:315-318. doi: 10.1016/j.wneu. 2017.11.083. [16] Han B, Liu YJ, Zhang XQ, et al. Three-dimensional printing as an aid to airway evaluation after tracheotomy in a patient with laryngeal carcinoma[J]. BMC Anesthesiol, 2016, 16: 6. doi:10.1186/s12871-015-0170-1. [17] Mukherjee P, Cheng K, Flanagan S, et al. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases[J]. Eur Arch Otorhinolaryngol, 2017, 274(8): 3021-3028. doi:10.1007/s00405-017-4618-4. [18] 郭颖媛, 张德军, 管国芳, 等. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122. doi:10.6040/j.issn.1673-3770.0. 2017.166. GUO Yingyuan, ZHANG Dejun, GUAN Guofang, et al. Exploration of the application of three-dimensional printing technology in the standardized training of doctors in the otolaryngological department[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 119-122. doi:10.6040/j.issn.1673-3770.0. 2017.166. [19] Rose AS, Kimbell JS, Webster CE, et al. Multi-material 3D models for temporal bone surgical simulation[J]. Ann Otol Rhinol Laryngol, 2015, 124(7): 528-536. doi:10.1177/0003489415570937. [20] Hochman JB, Rhodes C, Wong D, et al. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education[J]. Laryngoscope, 2015, 125(10): 2353-2357. doi:10.1002/lary. 24919. [21] Suzuki R, Taniguchi N, Uchida F, et al. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing[J]. Anat Sci Int, 2018, 93(1): 154-159. doi:10.1007/s12565-017-0417-7. [22] Ahmed S, VanKoevering KK, Kline S, et al. Middle cranial Fossa approach to repair tegmen defects assisted by three-dimensionally printed temporal bone models[J]. Laryngoscope, 2017, 127(10): 2347-2351. doi:10.1002/lary. 26438. [23] Haffner M, Quinn A, Hsieh TY, et al. Optimization of 3D print material for the recreation of patient-specific temporal bone models[J]. Ann Otol Rhinol Laryngol, 2018, 127(5): 338-343. doi:10.1177/0003489418764987. [24] Cote V, Schwartz M, Arbouin Vargas JF, et al. 3-Dimensional printed haptic simulation model to teach incomplete cleft palate surgery in an international setting[J]. Int J Pediatr Otorhinolaryngol, 2018, 113: 292-297. doi:10.1016/j.ijporl. 2018.08.016. [25] Barber SR, Jain S, Son YJ, et al. Virtual functional endoscopic sinus surgery simulation with 3D-printed models for mixed-reality nasal endoscopy[J]. Otolaryngol Head Neck Surg, 2018, 159(5): 933-937. doi:10.1177/0194599818797586. [26] Hsieh TY, Cervenka B, Dedhia R, et al. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(7): 574-579. doi:10.1001/jamaoto. 2018.0473. [27] Hochman JB, Rhodes C, Wong D, et al. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education[J]. Laryngoscope, 2015, 125(10): 2353-2357. doi:10.1002/lary. 24919. [28] Da Cruz MJ, Francis HW. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development[J]. J Laryngol Otol, 2015, 129(Suppl 3): S23-S29. doi:10.1017/S0022215115001346. [29] Berens AM, Newman S, Bhrany AD, et al. Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction[J]. Otolaryngol Head Neck Surg, 2016, 155(2): 356-359. doi:10.1177/0194599816639586. [30] Zopf DA, Mitsak AG, Flanagan CL, et al. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction[J]. Otolaryngol Head Neck Surg, 2015, 152(1): 57-62. doi:10.1177/0194599814552065. [31] Lee VK, Dai GH. Printing of three-dimensional tissue analogs for regenerative medicine[J]. Ann Biomed Eng, 2017, 45(1): 115-131. doi:10.1007/s10439-016-1613-7. [32] Zhong NP, Zhao X. 3D printing for clinical application in otorhinolaryngology[J]. Eur Arch Otorhinolaryngol, 2017, 274(12): 4079-4089. doi:10.1007/s00405-017-4743-0. [33] Townsend JM, Ott LM, Salash JR, et al. Reinforced electrospun polycaprolactone nanofibers for tracheal repair in an in vivo ovine model[J]. Tissue Eng Part A, 2018, 24(17/18): 1301-1308. doi:10.1089/ten.TEA. 2017.0437. |
[1] | 殷敏,史雅文,朱歆洁,陈智斌,陈曦,程雷. 耳鼻咽喉头颈外科PBL教学与住院医师规范化培训[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 154-156. |
[2] | 朱歆洁,陈若希,李晓璐,程雷. 临床医学本科留学生耳鼻咽喉科临床见习带教体会[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 157-159. |
[3] | 李超,闫昱江,张秦月,陈侠,曹永华. 标准化病人在耳鼻咽喉科CBL教学中的应用浅谈[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 111-114. |
[4] | 郭颖媛,张德军,管国芳,文连姬,张辉,于多娇,马帅帅. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122. |
[5] | 吴昆旻,吴建,李泽卿,陈伟,朱春晖,杨祁. 3D打印辅助上颌骨切除术后缺损重建[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 29-32. |
[6] | 温晗光, 陈缪安, 林婷婷, 朱秋蓓. 内镜影像系统在耳鼻咽喉科见习教学中的应用[J]. 山东大学耳鼻喉眼学报, 2014, 28(4): 92-94. |
[7] | 秦贺,孙建军. 脱细胞真皮基质在耳鼻咽喉修复外科中的应用[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 75-77. |
[8] | 叶犇1, 朱春生2. 骨髓间充质干细胞在耳鼻喉头颈外科的应用[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 77-81. |
[9] | 李雪盛,孙建军. 组织工程学技术在耳科的研究进展[J]. 山东大学耳鼻喉眼学报, 2009, 23(3): 30-33. |
[10] | 全世明,高志强 . 面神经修复及再生的组织工程学研究进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 97-101 . |
|