山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 125-131.doi: 10.6040/j.issn.1673-3770.0.2020.449
闫语1,2,曾澳1,2,何宇茜1
YAN Yu1,2, ZENG Ao1,2,HE Yuxi1
摘要: 感染性角膜炎是一种由致病微生物侵袭角膜组织引起的炎症,是世界性的常见致盲眼病,主要致病的病原体有细菌、真菌、病毒和棘阿米巴。其中,细菌感染是感染性角膜炎的主要原因,但近年来真菌性角膜炎有逐年增多趋势。目前的有效治疗手段主要是根据致病微生物不同,以局部使用或结膜下注射抗细菌和真菌制剂及全身运用抗病毒药物为主。综述从菌液制备、操作方法到评分检测方法系统地阐述了由细菌、真菌、病毒和棘阿米巴引起的角膜炎的模型制备。就如何制备出具有针对性的动物模型进行探讨,为评价及发掘治疗感染性角膜炎的治疗效果和不良反应提供依据。
中图分类号:
[1] 郝文培, 翟华蕾, 孙晓彤, 等. 角膜再移植原因与植片失活的危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3):134-140. doi:10.6040/j.issn.1673-3770.0.2019.605. HAO Wenpei, ZHAI Hualei, SUN Xiaotong, et al. Etiology of repeat keratoplasty and risk factors for failure of corneal grafts[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3):134-140. doi:10.6040/j.issn.1673-3770.0.2019.605. [2] Manikandan P, Abdel-Hadi A, Randhir Babu Singh Y, et al. Fungal keratitis: epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from cornealscrapings[J]. Biomed Res Int, 2019, 2019:6395840. doi:10.1155/2019/6395840. [3] Mahmoudi S, Masoomi A, Ahmadikia K, et al. Fungal keratitis: an overview of clinical and laboratory aspects[J]. Mycoses, 2018, 61(12):916-930. doi:10.1111/myc.12822. [4] Azher TN, Yin XT, Stuart PM. Understanding the role of chemokines and cytokines in experimental models of Herpes simplex keratitis[J]. J Immunol Res, 2017, 2017:1-5. doi:10.1155/2017/7261980. [5] Como CN, Bubak AN, Blackmon AM, et al. Varicella zoster virus induces differential cell-type specific responses in human corneal epithelial cells and keratocytes[J]. Invest Ophthalmol Vis Sci, 2019, 60(2):704-711. doi:10.1167/iovs.18-25801. [6] Pinna A, Porcu T, Boscia F, et al. Free-living amoebae keratitis[J]. Cornea, 2017, 36(7):785-790. doi:10.1097/ICO.0000000000001226. [7] Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment[J]. Parasite, 2015, 22:10. doi:10.1051/parasite/2015010. [8] Tolba ME, Huseein EA, Farrag HM, et al. Allovahlkampfia spelaea causing keratitis in humans[J]. PLoS Negl Trop Dis, 2016, 10(7):e0004841. doi:10.1371/journal.pntd.0004841. [9] Nunes TE, Brazil NT, Fuentefria AM, et al. Acanthamoeba and Fusarium interactions: a possible problem in keratitis[J]. Acta Trop, 2016, 157:102-107. doi:10.1016/j.actatropica.2016.02.001. [10] Saraswathi P, Beuerman RW. Corneal biofilms: from planktonic to microcolony formation in an experimental keratitis infection with Pseudomonas aeruginosa[J]. Ocul Surf, 2015, 13(4):331-345.doi:10.1016/j.jtos.2015.07.001. [11] Metruccio MME, Wan SJ, Horneman H, et al. A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa[J]. Ocul Surf, 2019, 17(1):119-133. doi:10.1016/j.jtos.2018.11.006. [12] Alarcon I, Tam C, Mun JJ, et al. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal[J]. Invest Ophthalmol Vis Sci, 2011, 52(3):1368-1377. doi:10.1167/iovs.10-6125. [13] Sun Y, Hise AG, Kalsow CM, et al. Staphylococcus aureus-induced corneal inflammation is dependent on Toll-like receptor 2 and myeloid differentiation factor 88[J]. Infect Immun, 2006, 74(9):5325-5332. doi:10.1128/IAI.00645-06. [14] Tang AH, Caballero AR, Marquart ME, et al. Mechanism of Pseudomonas aeruginosa small protease(PASP), a corneal virulence factor[J]. Invest Ophthalmol Vis Sci, 2018, 59(15):5993-6002. doi:10.1167/iovs.18-25834. [15] Zhu H, Kochevar IE, Behlau I, et al. Antimicrobial blue light therapy for infectious keratitis: ex vivo and in vivo studies[J]. Invest Ophthalmol Vis Sci, 2017, 58(1):586-593. doi:10.1167/iovs.16-20272. [16] Barequet IS, Bourla Ni, Pessach YN, et al. Staphylolysin is an effective therapeutic agent for Staphylococcus aureus experimental keratitis[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250(2):223-229. doi: 10.1007/s00417-011-1822-6. [17] Bischoff G, Kuhn D. Contact lens complications: Diagnosis and treatment[J]. Ophthalmologe, 2018, 115(12):1087-1102. doi: 10.1007/s00347-018-0812-z. [18] Metruccio MME, Wan SJ, Horneman H, et al. A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa[J]. Ocul Surf, 2019, 17(1):119-133. doi:10.1016/j.jtos.2018.11.006. [19] Wei C, Zhu MF, Petroll WM, et al. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model[J]. Invest Ophthalmol Vis Sci, 2014, 55(9):5890. doi:10.1167/iovs.14-14235. [20] Chucair-Elliott AJ, Gurung HR, Carr MM, et al. Colony stimulating factor-1 receptor expressing cells infiltrating the cornea control corneal nerve degeneration in response to HSV-1 infection[J]. Invest Ophthalmol Vis Sci, 2017, 58(11):4670-4682. doi:10.1167/iovs.17-22159. [21] Chucair-Elliott AJ, Zheng M, Carr DJJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection[J]. Investig Ophthalmol Vis Sci, 2015, 56(2):1097-1107. doi:10.1167/iovs.14-15596. [22] Tsatsos M, MacGregor C, Athanasiadis I, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents[J]. Clin Exp Ophthalmol, 2016, 44(9):824-837. doi:10.1111/ceo.12785. [23] Chucair-Elliott AJ, Carr MM, Carr DJJ. Long-term consequences of topical dexamethasone treatment during acute corneal HSV-1 infection on the immune system[J]. J Leukoc Biol, 2017, 101(5):1253-1261. doi:10.1189/jlb.4a1116-459r. [24] Watson ZL, Washington SD, Phelan DM, et al. In vivo knockdown of the Herpes simplex virus 1 latency-associated transcript reduces reactivation from latency[J]. J Virol, 2018, 92(16):e00812-e00818. doi:10.1128/JVI.00812-18. [25] Varanasi SK, Jaggi U, Hay N, et al. Hexokinase II may be dispensable for CD4 T cell responses against a virus infection[J]. PLoS One, 2018, 13(1):e0191533. doi:10.1371/journal.pone.0191533. [26] Varanasi SK, Reddy PBJ, Bhela S, et al. Azacytidine treatment inhibits the progression of Herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol, 2017, 91(7):e02367-e02316. doi:10.1128/JVI.02367-16. [27] 赵壮红. 单纯疱疹病毒性角膜炎小鼠模型的建立与鉴定[D]. 昆明: 昆明医科大学, 2019. [28] 姜玉珍, 曾明范, 王兵, 等. 改良深板层角膜移植术治疗大鼠严重基质坏死型单纯疱疹病毒性角膜基质炎的临床效果[J]. 中华医院感染学杂志, 2020, 30(13):2027-2032. doi:10.11816/cn.ni.2020-191504. JIANGYuzhen, ZENG Mingfan, WANG Bing, et al. Clinical effect of modified deep lamellar keratoplasty on treatment of rats with severe stromal necrosis Herpes simplex keratitis[J]. Chin J Nosocomiology, 2020, 30(13):2027-2032. doi:10.11816/cn.ni.2020-191504. [29] 周洪伟. P物质在小鼠单纯疱疹病毒性角膜炎复发中的作用研究[D]. 武汉: 武汉大学, 2016. ZHOU Hongwei. Experimental study on substance P inhibiting Herpes simplex keratitis recurrence in mouse[D]. Wuhan: Wuhan University, 2016. [30] Riccio RE, Park SJ, Longnecker R, et al. Characterization of sex differences in ocular herpes simplex virus 1 infection and herpes stromal keratitis pathogenesis of wild-type and herpesvirus entry mediator knockout mice[J]. mSphere, 2019, 4(3): e00322-19. doi:10.1128/mSphere.00322-19(2019). [31] Dridi S, Richerioux N, Gonzalez Suarez CE, et al. A mutation in the UL24 gene abolishes expression of the newly identified UL24.5 protein of Herpes simplex virus 1 and leads to an increase inpathogenicity in mice[J]. J Virol, 2018, 92(20):e00671-e00618. doi:10.1128/JVI.00671-18. [32] Davido DJ, Tu EM, Wang H, et al. Attenuated Herpes simplex virus 1(HSV-1)expressing a mutant form of ICP6 stimulates a strong immune response that protects mice against HSV-1-inducedcorneal disease[J]. J Virol, 2018, 92(17):92:e01036-18. doi:10.1128/jvi.01036-18. [33] Neelam S, Niederkorn JY. Pathobiology and immunobiology of keratitis: insights from animal models[J]. Yale J Biol Med, 2017, 90(2):261-268. [34] Alizadeh H, Neelam S, Niederkorn JY. Effect of immunization with the mannose-induced acanthamoeba protein and acanthamoeba plasminogen activator in mitigating acanthamoeba keratitis[J]. Invest Ophthalmol Vis Sci, 2007, 48(12):5597. doi:10.1167/iovs.07-0407. [35] Alizadeh H, Neelam S, Hurt M, et al. Role of contact lens wear, bacterial flora, and mannose-induced pathogenic protease in the pathogenesis of amoebic keratitis[J]. Infect Immun, 2005, 73(2):1061-1068. doi:10.1128/IAI.73.2.1061-1068.2005. [36] Nakagawa H, Hattori T, Koike N, et al. Investigation of the role of bacteria in the development of Acanthamoeba keratitis[J]. Cornea, 2015, 34(10):1308-1315.doi:10.1097/ICO.0000000000000541. [37] He YG, McCulley JP, Alizadeh H, et al. A pig model of Acanthamoeba keratitis: transmission via contaminated contact lenses[J]. Invest Ophthalmol Vis Sci, 1992, 33(1):126-133. [38] Ren MY, Wu XY. Evaluation of three different methods to establish animal models of Acanthamoeba keratitis[J]. Yonsei Med J, 2010, 51(1):121-127. doi:10.3349/ymj.2010.51.1.121. [39] Ge Z, Qing Y, Zicheng S, et al. Rapid and sensitive diagnosis of Acanthamoeba keratitis by loop-mediated isothermal amplification[J]. Clin Microbiol Infect, 2013, 19(11):1042-1048. doi:10.1111/1469-0691.12149. [40] Alizadeh H, Tripathi T, Abdi M, et al. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea[J]. PLoS One, 2014, 9(3):e92375.doi:10.1371/journal.pone.0092375. [41] Polat ZA, Obwaller A, Vural A, et al. Efficacy of miltefosine for topical treatment of Acanthamoeba keratitis in Syrian hamsters[J]. Parasitol Res, 2012, 110(2):515-520. doi:10.1007/s00436-011-2515-0. [42] Alekseev O, Tran AH, Azizkhan-Clifford J. Ex vivo organotypic corneal model of acute epithelial Herpes simplex virus type I infection[J]. J Vis Exp, 2012(69):e3631. doi:10.3791/3631. [43] Yadavalli T, Agelidis A, Jaishankar D, et al. Targeting Herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection[J]. Mol Ther Nucleic Acids, 2017, 9:365-378. doi:10.1016/j.omtn.2017.10.009. [44] Agelidis AM, Hadigal SR, Jaishankar D, et al. Viral activation of heparanase drives pathogenesis of Herpes simplex virus-1[J]. Cell Rep, 2017, 20(2):439-450. doi:10.1016/j.celrep.2017.06.041. [45] Richard NR, Anderson JA, Weiss JL, et al. Air/liquid corneal organ culture: a light microscopic study[J]. Curr Eye Res, 1991, 10(8):739-749. doi:10.3109/02713689109013868. [46] Harman RM, Bussche L, Ledbetter EC, et al. Establishment and characterization of an air-liquid canine corneal organ culture model to study acute Herpes keratitis[J]. J Virol, 2014, 88(23):13669-13677. doi:10.1128/JVI.02135-14. [47] 王宇静, 杨燕宁. 人角膜上皮细胞体外培养的研究进展[J]. 眼科新进展, 2017,37(4):384-387,391. doi:10.13389/j.cnki.rao.2017.0098. WANG Yujing, YANG Yanning. Research advances in cultured human corneal epithelium cells in vitro[J]. Recent Adv Ophthalmol, 2017, 37(4):384-387,391. doi:10.13389/j.cnki.rao.2017.0098. [48] 曲建秋. 甘露糖结合凝集素与Dectin-1、TLR2在真菌性角膜炎中的相互作用[D]. 青岛: 青岛大学, 2015. [49] Wei C, Zhu MF, Petroll WM, et al. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model[J]. Invest Ophthalmol Vis Sci, 2014, 55(9):5890-5899. doi:10.1167/iovs.14-14235. [50] Chucair-Elliott AJ, Zheng M, Carr DJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection[J]. Invest Ophthalmol Vis Sci, 2015, 56(2):1097-1107. doi:10.1167/iovs.14-15596. |
[1] | 胡锦东,刘新泉. 干眼动物模型研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 109-113. |
[2] | 李莉珠,吴卿,易欣,田理. 变应性鼻炎中医证候动物模型的研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 60-63. |
[3] | 王志远, 张革化. 慢性鼻-鼻窦炎小鼠模型及应用现状[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 76-78. |
[4] | 帅少帅, 何夏怡, 宁红珠, 罗友琼, 梁斯敏. 角膜基质层注射治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 76-78. |
[5] | 何景春1,阮清伟2,韩淼淼1,金斌1,李克勇1,董频1. 应用顺铂建立C57小鼠感音神经性聋模型的实验研究[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 1-5. |
[6] | 全世明1,彭本刚1,高志强2. T细胞免疫缺陷小鼠创伤性面瘫模型的建立及其形态学评价[J]. 山东大学耳鼻喉眼学报, 2010, 24(6): 5-9. |
[7] | 张颖,吴欣怡. 社区人群感染性角膜炎的认知及健康教育调查[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 52-54. |
[8] | 丁见 杨华 张念凯. 猫视神经损伤减压手术模型的建立[J]. 山东大学耳鼻喉眼学报, 2009, 23(3): 75-. |
[9] | 柳忠禄,王岩,李延忠 . 大鼠阻塞性睡眠呼吸暂停综合征动物模型的建立[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 31-33 . |
[10] | 姜 彦,董 频,李晓艳,於子卫,徐宏鸣,谢 晋,徐承志 . 喉移植模式的初步研究[J]. 山东大学耳鼻喉眼学报, 2007, 21(6): 484-487 . |
|