山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 144-150.doi: 10.6040/j.issn.1673-3770.0.2020.484
狄宇,李莹
DI Yu,LI Ying
摘要: 干眼是一种多因素所致的泪液稳定性和眼表功能损害的疾病,近年来患病率逐渐上升,已成为最常见的眼表疾病之一。炎症反应为干眼发病机制中最为关键的环节,其通过刺激眼表细胞,激活局部免疫反应、导致眼表泪膜稳定性下降、增加泪液渗透压,从而导致局部眼表损伤,该过程中有多种炎症介质和免疫细胞的参与。近年来干眼炎症反应机制的相关研究逐渐增多。就干眼炎症介质、免疫细胞、免疫应答及抗炎治疗进行综述,以期系统性了解干眼炎症反应机制及其临床意义。
中图分类号:
[1] Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options[J]. J Ocul Pharmacol Ther, 2020, 36(3): 137-146. doi:10.1089/jop.2019.0060. [2] Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report[J]. Ocul Surf, 2017, 15(3): 276-283. doi:10.1016/j.jtos.2017.05.008. [3] Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease[J]. Int Rev Immunol, 2013, 32(1): 19-41. doi:10.3109/08830185.2012.748052. [4] 孙子雯, 崔洪玮, 孙喜灵, 等. 干眼病的病因、发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 3(33):159-166. doi: 10.6040/j.issn.1673-3770.0.2018.411. SUN Ziwen, CUI Hongwei, SUN Xiling, et al. Etiology, pathogenesis, and management of dry eye[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 3(33):159-166. doi: 10.6040/j.issn.1673-3770.0.2018.411. [5] Yagci A, Gurdal C. The role and treatment of inflammation in dry eye disease[J]. Int Ophthalmol, 2014, 34(6): 1291-1301. doi:10.1007/s10792-014-9969-x. [6] 高雅, 李冰, 陈研遐, 等. 白介素1β在干眼患者眼表的表达[J]. 中华眼视光学与视觉科学杂志, 2014, 16(4): 228-232. doi: 10.3760/cma.j.issn.1674-845X.2014.04.009. GAO Ya, LI Bing, CHEN Yanxia, et al. A study of the expression of IL-1 beta on the ocular surface in dry eye patients[J]. Chinese Journal of Optometry & Ophthalmology, 2014, 16(4): 228-232. doi: 10.3760/cma.j.issn.1674-845X.2014.04.009. [7] Benitez J, Cantu-Dibildox J, Sanz-González SM, et al. Cytokine expression in tears of patients with Glaucoma or dry eye disease: a prospective, observational cohort study[J]. Eur J Ophthalmol, 2019, 29(4): 437-443. doi:10.1177/1120672118795399. [8] Landsend ECS, Utheim A, Pedersen HR, et al. The level of inflammatory tear cytokines is elevated in congenital aniridia and associated with meibomian gland dysfunction[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 2197-2204. doi:10.1167/iovs.18-24027. [9] Lee H, Chung B, Kim KS, et al. Effects of topical loteprednol etabonate on tear cytokines and clinical outcomes in moderate and severe meibomian gland dysfunction: randomized clinical trial[J]. Am J Ophthalmol, 2014, 158(6): 1172-1183.e1. doi:10.1016/j.ajo.2014.08.015. [10] Bi Y, Yang R. Direct and indirect regulatory mechanisms in TH17 cell differentiation and functions[J]. Scand J Immunol, 2012, 75(6): 543-552. doi:10.1111/j.1365-3083.2012.02686.x. [11] Higuchi A, Kawakita T, Tsubota K. IL-6 induction in desiccated corneal epithelium in vitro and in vivo[J]. Mol Vis, 2011, 17: 2400-2406. doi: 10.2214/ajr.142.6.1205. [12] Na KS, Mok JW, Kim JY, et al. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5443-5450. doi:10.1167/iovs.11-9417. [13] McDonnell PJ, Pflugfelder SC, Stern ME, et al. Study design and baseline findings from the progression of ocular findings(PROOF)natural history study of dry eye[J]. BMC Ophthalmol, 2017, 17(1): 265. doi:10.1186/s12886-017-0646-5. [14] Jung JW, Han SJ, Nam SM, et al. Meibomian gland dysfunction and tear cytokines after cataract surgery according to preoperative meibomian gland status[J]. Clin Exp Ophthalmol, 2016, 44(7): 555-562. doi:10.1111/ceo.12744. [15] De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress[J]. Mucosal Immunol, 2009, 2(3): 243-253. doi:10.1038/mi.2009.5. [16] Chen Y, Chauhan SK, Lee HS, et al. Chronic dry eye disease is principally mediated by effector memory Th17 cells[J]. Mucosal Immunol, 2014, 7(1): 38-45. doi:10.1038/mi.2013.20. [17] Lee SY, Han SJ, Nam SM, et al. Analysis of tear cytokines and clinical correlations in sjögren syndrome dry eye patients and non-sjögren syndrome dry eye patients[J]. Am J Ophthalmol, 2013, 156(2): 247-253. doi:10.1016/j.ajo.2013.04.003. [18] Mrugacz M, Ostrowska L, Bryl A, et al. Pro-inflammatory cytokines associated with clinical severity of dry eye disease of patients with depression[J]. Adv Med Sci, 2017, 62(2): 338-344. doi:10.1016/j.advms.2017.03.003. [19] Tong L, Beuerman R, Simonyi S, et al. Effects of punctal occlusion on clinical signs and symptoms and on tear cytokine levels in patients with dry eye[J]. Ocul Surf, 2016, 14(2): 233-241. doi:10.1016/j.jtos.2015.12.004. [20] Pflugfelder SC, De Paiva CS, Moore QL, et al. Aqueous tear deficiency increases conjunctival interferon-γ(IFN-γ)expression and goblet cell loss[J]. Invest Ophthalmol Vis Sci, 2015, 56(12): 7545-7550. doi:10.1167/iovs.15-17627. [21] Jackson DC, Zeng W, Wong CY, et al. Tear interferon-gamma as a biomarker for evaporative dry eye disease[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4824-4830. doi:10.1167/iovs.16-19757. [22] Chotikavanich S, de Paiva CS, Li DQ, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3203-3209. doi:10.1167/iovs.08-2476. [23] Yang S, Lee HJ, Kim DY, et al. The use of conjunctival staining to measure ocular surface inflammation in patients with dry eye[J]. Cornea, 2019, 38(6): 698-705. doi:10.1097/ico.0000000000001916. [24] Messmer EM, von Lindenfels V, Garbe A, et al. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay[J]. Ophthalmology, 2016, 123(11): 2300-2308. doi:10.1016/j.ophtha.2016.07.028. [25] Schargus M, Ivanova S, Kakkassery V, et al. Correlation of tear film osmolarity and 2 different MMP-9 tests with common dry eye tests in a cohort of non-dry eye patients[J]. Cornea, 2015, 34(7): 739-744. doi:10.1097/ico.0000000000000449. [26] Enríquez-de-Salamanca A, Castellanos E, Stern ME, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease[J]. Mol Vis, 2010, 16: 862-873. PMID: 20508732. [27] Massingale ML, Li XH, Vallabhajosyula M, et al. Analysis of inflammatory cytokines in the tears of dry eye patients[J]. Cornea, 2009, 28(9): 1023-1027. doi:10.1097/ico.0b013e3181a16578. [28] Choi W, Li ZR, Oh HJ, et al. Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease[J]. Curr Eye Res, 2012, 37(1): 12-17. doi:10.3109/02713683.2011.622852. [29] Nicolle P, Liang H, Reboussin E, et al. Proinflammatory markers, chemokines, and enkephalin in patients suffering from dry eye disease[J]. Int J Mol Sci, 2018, 19(4): 1221. doi:10.3390/ijms19041221. [30] Wang T, Li WH, Cheng HH, et al. The important role of the chemokine axis CCR7-CCL19 and CCR7-CCL21 in the pathophysiology of the immuno-inflammatory response in dry eye disease[J]. Ocular Immunol Inflamm, 2019: 1-12. doi:10.1080/09273948.2019.1674891. [31] Lefort CT, Ley K. Neutrophil arrest by LFA-1 activation[J]. Front Immunol, 2012, 3: 157. doi:10.3389/fimmu.2012.00157. [32] Hogg N, Laschinger M, Giles K, et al. T-cell integrins: more than just sticking points[J]. J Cell Sci, 2003, 116(Pt 23): 4695-4705. doi:10.1242/jcs.00876. [33] Liu M, Gao H, Wang T, et al. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy[J]. Clin Exp Allergy, 2014, 44(3): 362-370. doi:10.1111/cea.12264. [34] Hamrah P, Huq SO, Liu Y, et al. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells[J]. J Leukoc Biol, 2003, 74(2): 172-178. doi:10.1189/jlb.1102544. [35] El Annan J, Chauhan SK, Ecoiffier T, et al. Characterization of effector T cells in dry eye disease[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3802-3807. doi:10.1167/iovs.08-2417. [36] De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye-induced conjunctival epithelial squamous Metaplasia is modulated by interferon-gamma[J]. Invest Ophthalmol Vis Sci, 2007, 48(6): 2553-2560. doi:10.1167/iovs.07-0069. [37] Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252. doi:10.4049/jimmunol.182.3.1247. [38] von Knethen A, Heinicke U, Weigert A, et al. Histone deacetylation inhibitors as modulators of regulatory T cells[J]. Int J Mol Sci, 2020, 21(7): 2356. doi:10.3390/ijms21072356. [39] Ratay ML, Balmert SC, Bassin EJ, et al. Controlled release of an HDAC inhibitor for reduction of inflammation in dry eye disease[J]. Acta Biomater, 2018, 71: 261-270. doi:10.1016/j.actbio.2018.03.002. [40] 蔡丽萍, 张宏. 炎症免疫相关信号通路在干眼发病机制中的研究进展[J]. 国际眼科杂志, 2016, 16(6): 1084-1088. doi:10.3980/j.issn.1672-5123.2016.6.20. LIPING Cai, HONG Zhang. Research progress on inflammatory immunity related signaling pathway for the pathogenesis of dry eye[J]. Int Eye Sci, 2016, 16(6): 1084-1088. doi:10.3980/j.issn.1672-5123.2016.6.20. [41] Hattori T, Takahashi H, Dana R. Novel insights into the immunoregulatory function and localization of dendritic cells[J]. Cornea, 2016, 35(Suppl 1): S49-S54. doi:10.1097/ico.0000000000001005. [42] Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease[J]. Exp Eye Res, 2013, 117: 118-125. doi:10.1016/j.exer.2013.08.013. [43] Pflugfelder SC, Geerling G, Kinoshita S, et al. Management and therapy of dry eye disease: Report of the management and therapy subcommittee of the international Dry Eye WorkShop(2007)[C] //2007, 5: 163-178. [44] Pinto-Fraga J, Lopez-Miguel A, Gonzalez-Garcia MJ, et al. Topical fluorometholone protects the ocular surface of dry eye patients from desiccating stress: a randomized controlled clinical trial[J]. Ophthalmology, 2016, 123(1):141-53. doi: 10.1016/j.ophtha.2015.09.029. [45] Jung HH, Ji YS, Sung MS, et al. Long-term outcome of treatment with topical corticosteroids for severe dry eye associated with sjögren's syndrome[J]. Chonnam Med J, 2015, 51(1): 26-32. doi:10.4068/cmj.2015.51.1.26. [46] Sall K, Stevenson OD, Mundorf TK, et al. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease[J]. Ophthalmology, 2000, 107(4): 631-639. doi:10.1016/S0161-6420(99)00176-1. [47] Ji YW, Kim HM, Ryu SY, et al. Changes in human tear proteome following topical treatment of dry eye disease: cyclosporine A versus diquafosol tetrasodium[J]. Invest Ophthalmol Vis Sci, 2019, 60(15): 5035-5044. doi:10.1167/iovs.19-27872. [48] Daull P, Barabino S, Feraille L, et al. Modulation of inflammation-related genes in the cornea of a mouse model of dry eye upon treatment with cyclosporine eye drops[J]. Curr Eye Res, 2019, 44(5): 476-485. doi:10.1080/02713683.2018.1563197. [49] Guimaraes de Souza R, Yu Z, Stern ME, et al. Suppression of Th1-mediated keratoconjunctivitis sicca by lifitegrast[J]. J Ocul Pharmacol Ther, 2018, 34(7): 543-549. doi:10.1089/jop.2018.0047. [50] Haber SL, Benson V, Buckway CJ, et al. Lifitegrast: a novel drug for patients with dry eye disease[J]. Ther Adv Ophthalmol, 2019, 11: 2515841419870366. doi:10.1177/2515841419870366. [51] Semba CP, Torkildsen GL, Lonsdale JD, et al. A phase 2 randomized, double-masked, placebo-controlled study of a novel integrin antagonist(SAR 1118)for the treatment of dry eye[J]. Am J Ophthalmol, 2012, 153(6): 1050-1060.e1. doi:10.1016/j.ajo.2011.11.003. [52] Holland EJ, Luchs J, Karpecki PM, et al. Lifitegrast for the treatment of dry eye disease: results of a phase Ⅲ, randomized, double-masked, placebo-controlled trial(OPUS-3)[J]. Ophthalmology, 2017, 124(1): 53-60. doi:10.1016/j.ophtha.2016.09.025. [53] Kim CE, Kleinman HK, Sosne G, et al. RGN-259(thymosin β4)improves clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model[J]. Sci Rep, 2018, 8(1): 1-14. doi:10.1038/s41598-018-28861-5. [54] Sosne G, Dunn SP, Kim C. Thymosin β4 significantly improves signs and symptoms of severe dry eye in a phase 2 randomized trial[J]. Cornea, 2015, 34(5): 491-496. doi:10.1097/ico.0000000000000379. |
[1] | 张钰曲毅. 眼弓形体病的发病机制及防治研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 70-76. |
[2] | 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112. |
[3] | 张可人, 雷春燕, 张美霞. 眼睑松弛综合征伴阻塞性睡眠呼吸暂停1例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 125-128. |
[4] | 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. |
[5] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[6] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[7] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[8] | 曾宪廷,王广科,孙占伟,武天义,李世超,王卫卫. 伴咽喉反流的难治性鼻窦炎术后应用质子泵抑制剂的疗效观察[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 189-194. |
[9] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[10] | 白伶伶,王红星,王立春. 可吸收泪小管塞栓联合人工泪液治疗中重度干眼的有效性及对视觉相关生存质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 78-82. |
[11] | 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74. |
[12] | 李孟辉,郅莉莉,戚凯文,王珊珊,高倩,步美玲,姜荷云,冯绛楠,王金荣. 皮下免疫治疗对单一尘螨和合并霉菌过敏儿童哮喘的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 75-80. |
[13] | 陈坤,陆慧,黄琦,李磊,孟国珍,杨军,侯东明. 小儿先天性鼻腔鼻窦肿物的临床诊疗观察[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 81-85. |
[14] | 曾斌, 吕丹, 任佳, 胡娟娟, 于凌昱, 卢欢, 杨慧. 喉显微外科技术在严重新生儿上气道梗阻中的应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 95-99. |
[15] | 赵兴贺,樊明月,窦训武,贾广彪. 儿童原发扁桃体弥漫大B细胞淋巴瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 120-124. |
|