山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (4): 120-128.doi: 10.6040/j.issn.1673-3770.0.2021.388
• • 上一篇
王媚1综述 李志海2审校
WANG Mei1Overview,LI Zhihai2Guidance
摘要: 喉癌是头颈部最常见的恶性肿瘤之一,尽管喉癌检测和治疗的进步增加了早期治愈的可能性,但大多数患者最终因耐药和复发而死亡,因此治疗耐药性和转移是当今喉癌治疗的主要挑战。随着研究的深入,肿瘤干细胞的存在已被证明与肿瘤发生和治疗抗性密切相关。喉癌的早期诊断和治疗有赖于肿瘤干细胞标志物的发现和鉴定,这对喉癌的靶向治疗有着深远的意义。回顾了目前国内外对喉癌干细胞的研究,从肿瘤干细胞起源,喉癌干细胞可能的耐药机制、并对维持喉癌干性的表面标志物与喉癌靶向治疗的相关进展进行综述,旨在为喉癌的临床治疗提供新的方向及作用靶点。
中图分类号:
[1] 胡晨, 薛继尧, 龚洪立, 等. 喉鳞状细胞癌局部复发影响因素及预后分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002. HU Chen, XUE Jiyao, GONG Hongli, et al. Analysis of correlation factors and prognosis of local recurrence of laryngeal squamous cell carcinoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002. [2] Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer[J]. CA Cancer J Clin, 2017, 67(1): 31-50. doi:10.3322/caac.21386. [3] 乐慧君, 陈思宇, 李芸, 等. 喉癌诊疗策略及进展[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(11): 1017-1021. doi:10.13201/j.issn.1001-1781.2019.11.003. YUE Huijun, CHEN Siyu, LI Yun, et al. The progress on diagnosis and treatment of larynx cancer[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2019, 33(11): 1017-1021. doi:10.13201/j.issn.1001-1781.2019.11.003. [4] 周春玲. 喉癌手术治疗的临床疗效及预后分析[D]. 泸州: 西南医科大学, 2020. [5] 郭慧, 高伟, 秦多, 等. RNAi干扰Stat3基因诱导喉癌顺铂耐药细胞凋亡及对Stat3信号转导的影响[J]. 中国实验诊断学, 2017, 21(5): 873-877. GUO Hui, GAO Wei, QIN Duo, et al. RNA interference Stat3 gene induced laryngeal carcinoma cisplatin resistant cell apoptosis of Stat3 signaling pathway[J]. Chinese Journal of Laboratory Diagnosis, 2017, 21(5): 873-877. [6] 李聪, 徐兵河. 肿瘤干细胞临床应用研究进展[J]. 中国癌症防治杂志, 2021, 13(1): 1-6. doi:10.3969/j.issn.1674-5671.2021.01.01. LI Cong, XU Binghe. Research progress in clinical application of tumor stem cells[J]. Chinese Journal of Oncology Prevention and Treatment, 2021, 13(1): 1-6. doi:10.3969/j.issn.1674-5671.2021.01.01. [7] Garcia-Mayea Y, Mir C, Masson F, et al. Insights into new mechanisms and models of cancer stem cell multidrug resistance[J]. Semin Cancer Biol, 2020, 60: 166-180. doi:10.1016/j.semcancer.2019.07.022. [8] Krause M, Dubrovska A, Linge A, et al. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments[J]. Adv Drug Deliv Rev, 2017, 109: 63-73. doi:10.1016/j.addr.2016.02.002. [9] 杨婷, 冉宇靓. 靶向肿瘤干细胞治疗肿瘤[J]. 中国肿瘤生物治疗杂志, 2021, 28(7): 651-658. doi:10.3872/j.issn.1007-385x.2021.07.001. YANG Ting, RAN Yujing. Targeting cancer stem cells for cancer therapy[J]. Chinese Journal of Cancer Biotherapy, 2021, 28(7): 651-658. doi:10.3872/j.issn.1007-385x.2021.07.001. [10] Battista T, Fiorillo A, Chiarini V, et al. Roles of sorcin in drug resistance in cancer: one protein, many mechanisms, for a novel potential anticancer drug target[J]. Cancers(Basel), 2020, 12(4): E887. doi:10.3390/cancers12040887. [11] 李飞. 喉癌干细胞耐药基因的初步筛选[D].太原:山西医科大学, 2017. [12] Cojoc M, M?倞bert K, Muders MH, et al. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms[J]. Semin Cancer Biol, 2015, 31: 16-27. doi:10.1016/j.semcancer.2014.06.004. [13] Roy Choudhury A, Gupta S, Chaturvedi PK, et al. Mechanobiology of cancer stem cells and their niche[J]. Cancer Microenviron, 2019, 12(1): 17-27. doi:10.1007/s12307-019-00222-4. [14] Liu YC, Yeh CT, Lin KH. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies[J]. Cells, 2020, 9(6): 1331. doi:10.3390/cells9061331. [15] Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell(CSC)resistance drivers[J]. Life Sci, 2019, 234: 116781. doi:10.1016/j.lfs.2019.116781. [16] Bedard PL, Hansen AR, Ratain MJ, et al. Tumour heterogeneity in the clinic[J]. Nature, 2013, 501(7467): 355-364. doi:10.1038/nature12627. [17] Batlle E, Clevers H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134. doi:10.1038/nm.4409. [18] Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting[J]. BMB Rep, 2017, 50(3): 117-125. doi:10.5483/bmbrep.2017.50.3.222. [19] 杨震, 姚金光. 口腔颌面部恶性肿瘤干细胞标志物用于靶向治疗的研究进展[J]. 癌症进展, 2021, 19(7): 653-657, 728. doi:10.11877/j.issn.1672-1535.2021.19.07.02. [20] 李梦璐, 高伟, 吴勇延, 等. 头颈部鳞状细胞癌中肿瘤干细胞生物标记物的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(9): 854-858. doi:10.13201/j.issn.2096-7993.2021.09.020. LI Menglu, GAO Wei, WU Yongyan, et al. Research progress of cancer stem cell biomarkers in head and neck squamous cell carcinoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2021, 35(9): 854-858. doi:10.13201/j.issn.2096-7993.2021.09.020. [21] Liou GY. CD133 as a regulator of cancer metastasis through the cancer stem cells[J]. Int J Biochem Cell Biol, 2019, 106: 1-7. doi:10.1016/j.biocel.2018.10.013. [22] Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning[J]. Blood, 1997, 90(12): 5013-5021. [23] Liu TT, Li XF, Wang L, et al. CD133 expressionand clinicopathologic significance in benign and malignant breast lesions[J]. Cancer Biomark, 2020, 28(3): 293-299. doi:10.3233/CBM-190196. [24] Nagata H, Ishihara S, Kishikawa J, et al. CD133 expression predicts post-operative recurrence in patients with colon cancer with peritoneal metastasis[J]. Int J Oncol, 2018, 52(3): 721-732. doi:10.3892/ijo.2018.4240. [25] Wakizaka K, Yokoo H, Kamiyama T, et al. CD133 and epithelial cell adhesion molecule expressions in the cholangiocarcinoma component are prognostic factors for combined hepatocellular cholangiocarcinoma[J]. Hepatol Res, 2020, 50(2): 258-267. doi:10.1111/hepr.13443. [26] 廖成成, 安家兴, 谭张雪, 等. 口腔鳞状细胞癌干细胞的治疗靶点及应用前景[J]. 中国组织工程研究, 2021, 25(7): 1096-1103. LIAO Chengcheng, AN Jiaxing, TAN Zhangxue, et al. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. [27] Jang JW, Song Y, Kim SH, et al. Potential mechanisms of CD133 in cancer stem cells[J]. Life Sci, 2017, 184: 25-29. doi:10.1016/j.lfs.2017.07.008. [28] 王晓刚. 肿瘤干细胞标志物CD133在鼻咽癌研究中的应用[J]. 海南医学, 2019, 30(14): 1874-1876. doi:10.3969/j.issn.1003-6350.2019.14.032. WANG Xiaogang. Progress in CD133 as cancer stem cell markers in nasopharyngeal carcinoma[J]. Journal of Hainan Medical University, 2019, 30(14): 1874-1876. doi:10.3969/j.issn.1003-6350.2019.14.032. [29] 程雨涵, 龚熹, 罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展[J]. 中国生物工程杂志, 2019, 39(5): 105-113. doi:10.13523/j.cb.20190512. CHENG Yuhan, GONG Xi, LUO Yuping. Advances in studies on the structure, function and related antibodies of CD133(prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113. doi:10.13523/j.cb.20190512. [30] Wang J, Wu YY, Gao W, et al. Identification and characterization of CD133+CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines[J]. J Cancer, 2017, 8(3): 497-506. doi:10.7150/jca.17444. [31] Zhou L, Wei XD, Cheng L, et al. CD133, one of the markers of cancer stem cells in Hep-2 cell line[J]. Laryngoscope, 2007, 117(3): 455-460. doi:10.1097/01.mlg.0000251586.15299.35. [32] Chen C, Xu ZH, Wang L. The effect of morusin on stemness phenotype of laryngeal cancer stem cell[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2020, 51(5): 650-657. doi:10.12182/20200960503. [33] 龚小蓉. 喉癌顺铂耐药细胞株的建立及耐药机制的研究[D]. 广州: 广州医科大学, 2018. [34] 王莹, 郭毅, 林海峰, 等. 小细胞肺癌肿瘤组织及血清CD44表达及临床预后意义[J]. 中国肺癌杂志, 2021, 24(8): 583-590. doi:10.3779/j.issn.1009-3419.2021.104.10. WANG Ying, GUO Yi, LIN Haifeng, et al. Expression of CD44 in tumor tissue and serum of small cell lung cancer and its clinical prognostic significance[J]. Chinese Journal of Lung Cancer, 2021, 24(8): 583-590. dosn.1009-3419.2021.104.10. [35] Si DL, Yin F, Peng J, et al. High expression of CD44 predicts a poor prognosis in glioblastomas[J]. Cancer Manag Res, 2020, 12: 769-775. doi:10.2147/CMAR.S233423. [36] Trapasso S, Garozzo A, Belfiore A, et al. Evaluation of the CD44 isoform v-6(sCD44var, v6)in the saliva of patients with laryngeal carcinoma and its prognostic role[J]. Cancer Biomark, 2016, 16(2): 275-280. doi:10.3233/CBM-150565. [37] Kashyap T, Pramanik KK, Nath N, et al. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants(v4 and v6)in oral cancer[J]. Oral Oncol, 2018, 86: 234-243. doi:10.1016/j.oraloncology.2018.09.028. [38] 罗大虎, 娄卫华. 临床喉鳞癌组织标本中G3BP和CD44v6的检测及意义[J]. 细胞与分子免疫学杂志, 2017, 33(7): 977-982. doi:10.13423/j.cnki.cjcmi.008201. LUO Dahu, LOU Weihua. Dectection of G3BP and CD44v6 in the tissues of laryngeal squamous cell carcinoma and their clinical significance[J]. Chinese Journal of Cellular and Molecular Immunology, 2017, 33(7): 977-982. doi:10.13423/j.cnki.cjcmi.008201. [39] 谢亚学, 尚小领, 范婕. RhoA、Ezrin和CD44在喉鳞状细胞癌组织中的表达及临床意义[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(3): 191-194. doi:10.13201/j.issn.1001-1781.2017.03.006. XIE Yaxue, SHANG Xiaoling, FAN Jie. The expression and clinical significance of RhoA, Ezrin and CD44 in laryngeal squamous cell carcinoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(3): 191-194. doi:10.13201/j.issn.1001-1781.2017.03.006. [40] 马爽, 乔娜, 张静, 等. 肿瘤干细胞标志物ALDH1在恶性肿瘤中表达特点与预后关系的研究进展[J]. 医学综述, 2020, 26(5): 920-923, 929. doi:10.3969/j.issn.1006-2084.2020.05.017. MA Shuang, QIAO Na, ZHANG Jing, et al. Research progress of ALDH1-marker of cancer stem cells on malignant tumor and its relationship with prognosis[J]. Medical Recapitulate, 2020, 26(5): 920-923, 929. doi:10.3969/j.issn.1006-2084.2020.05.017. [41] Kulsum S, Sudheendra HV, Pandian R, et al. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition[J]. Mol Carcinog, 2017, 56(2): 694-711. doi:10.1002/mc.22526. [42] Zhao Y, Jin X, Li N, et al. Expressions and significance of ALDH1, HIF-1α and VEGF in laryngeal squamous cell carcinoma[J]. J Sichuan Univ Med Sci Ed, 2017, 48(3): 399-404. [43] 李冬雷, 张旭宇, 肖跃华, 等. 喉癌组织中Oct4、Nanog、β-catenin的表达情况及临床意义[J]. 癌症进展, 2020, 18(2): 148-151, 175. doi:10.11877/j.issn.1672-1535.2020.18.02.10. LI Donglei, ZHANG Xuyu, XIAO Yuehua, et al. The expression and clinical significance of Oct4, Nanog and β-catenin in laryngeal carcinoma[J]. Oncology Progress, 2020, 18(2): 148-151, 175. doi:10.11877/j.issn.1672-1535.2020.18.02.10. [44] Kumbar VM, Muddapur UM, Bhat KG, et al. Cancer stem cell traits in tumor spheres derived from primary laryngeal carcinoma cell lines[J]. Contemp Clin Dent, 2021, 12(3): 247-254. doi:10.4103/ccd.ccd_252_20. [45] Novak D, Hüser L, Elton JJ, et al. SOX2 in development and cancer biology[J]. Semin Cancer Biol, 2020, 67(Pt 1): 74-82. doi:10.1016/j.semcancer.2019.08.007. [46] Chaudhary S, Islam Z, Mishra V, et al. Sox2: a regulatory factor in tumorigenesis and metastasis[J]. Curr Protein Pept Sci, 2019, 20(6): 495-504. doi:10.2174/1389203720666190325102255. [47] Mohammad IS, He W, Yin LF. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR[J]. Biomed Pharmacother, 2018, 100: 335-348. doi:10.1016/j.biopha.2018.02.038. [48] 苏甜甜, 张佳, 孙臻峰. 多药耐药基因蛋白P-gp和ABCG2在喉癌等头颈肿瘤中的作用及相关信号通路[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 103-106. SU Tiantian, ZHANG Jia, SUN Zhenfeng. Roles of multidrug resistance proteins P-gp and ABCG2 in laryngocatcinoma and their related signal pathways[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(3): 103-106. [49] 于锋, 龚小蓉, 周毅波. 喉癌顺铂耐药细胞株的建立及干性生物学特性分析[J]. 中国耳鼻咽喉颅底外科杂志, 2018, 24(1): 39-44. doi:10.11798/j.issn.1007-1520.201801009. YU Feng, GONG Xiaorong, ZHOU Yibo. Establishment of a cisplatin-resistant human laryngeal carcinoma cell line and its stem cell biological characteristics[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2018, 24(1): 39-44. doi:10.11798/j.issn.1007-1520.201801009. [50] 何佳怡, 卫旭东, 何健, 等. 葫芦素E对人喉癌干细胞生理活动的影响及分子机制探究[J]. 中国现代药物应用, 2019, 13(9): 232-234. doi:10.14164/j.cnki.cn11-5581/r.2019.09.135. HE Jiayi, WEI Xudong, HE Jian, et al. Investigation of effects of cucurbitacin E on physiological activities of human laryngeal cancer stem cells and its molecular mechanisms[J]. Chinese Journal of Modern Drug Application, 2019, 13(9): 232-234. doi:10.14164/j.cnki.cn11-5581/r.2019.09.135. [51] Qi XM, Yu D, Jia B, et al. Targeting CD133(+)laryngeal carcinoma cells with chemotherapeutic drugs and siRNA against ABCG2 mediated by thermo/pH-sensitive mesoporous silica nanoparticles[J]. Tumour Biol, 2016, 37(2): 2209-2217. doi:10.1007/s13277-015-4007-9. [52] 陈靖昀, 于书剑, 肖冬. 刺五加多糖对肿瘤干细胞的作用研究[J]. 中国实验诊断学, 2019, 23(7): 1233-1238. doi:10.3969/j.issn.1007-4287.2019.07.044. CHEN Jingyun, YU Shujian, XIAO Dong. The effection of Acanthopanax senticosus polysaccharide on cancer stem cells[J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(7): 1233-1238. doi:10.3969/j.issn.1007-4287.2019.07.044. [53] 王彬蓉, 应畅, 方慧玲, 等. 人喉癌干细胞的培养鉴定及其增殖的抑制研究[J]. 中国细胞生物学学报, 2019, 41(6): 1100-1106. doi:10.11844/cjcb.2019.06.0012. WANG Binrong, YING Chang, FANG Huiling, et al. The indentification and suppression effection of proliferation on human laryngeal cancer stem cell[J]. Chinese Journal of Cell Biology, 2019, 41(6): 1100-1106. doi:10.11844/cjcb.2019.06.0012. [54] 石浩伟, 郝少龙, 纪宇, 等. 低氧微环境对胰腺癌影响的研究进展[J]. 中华普外科手术学杂志(电子版), 2021, 15(3): 351-354. SHI Haowei, HAO Shaolong, JI Yu, et al. Research progress on the effect of hypoxic microenvironment on pancreatic cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2021, 15(3): 351-354. [55] Liu ML, Zhong JX, Zeng Z, et al. Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein[J]. Theranostics, 2019, 9(16): 4795-4810. doi:10.7150/thno.30988. [56] 孙庆佳. 周期性低氧诱导喉癌细胞化疗抵抗的作用机制[D]. 长春: 吉林大学, 2012. [57] 高伟, 邬信芳, 李钦. 缺氧诱导因子-1α在喉癌中的研究进展[J]. 中国眼耳鼻喉科杂志, 2021, 21(3): 230-233. doi:10.14166/j.issn.1671-2420.2021.03.022. GAO Wei, WU Xinfang, LI Qin. Research progress on hypoxia inducible factor-1α in laryngeal cancer[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2021, 21(3): 230-233. doi:10.14166/j.issn.1671-2420.2021.03.022. [58] 钟江涛. 靶向抑制喉癌干细胞GLUT-1提高喉癌放射敏感性机制的体内外研究[D]. 杭州: 浙江大学, 2018. [59] Song K, Farzaneh M. Signaling pathways governing breast cancer stem cells behavior[J]. Stem Cell Res Ther, 2021, 12(1): 245. doi:10.1186/s13287-021-02321-w. [60] 勾蓉. 肿瘤干细胞信号通路(PI3K/AKT)研究与进展[J]. 哈尔滨医药, 2021, 41(1): 139-141. GOU Rong. Research and development in the signal pathway of cancer stem cells(PI3K/AKT)[J]. Harbin Medical Journal, 2021, 41(1): 139-141. [61] Liu R, Chen YW, Liu GZ, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9): 797. doi:10.1038/s41419-020-02998-6. [62] Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, et al. WNT signaling in tumors: the way to evade drugs and immunity[J]. Front Immunol, 2019, 10: 2854. doi:10.3389/fimmu.2019.02854. [63] Ghandadi M, Valadan R, Mohammadi H, et al. Wnt-β-catenin signaling pathway, the Achilles's; heels of cancer multidrug resistance[J]. Curr Pharm Des, 2019, 25(39): 4192-4207. doi:10.2174/1381612825666191112142943. [64] 唐晓敏. 靶向下调YAP通过调控EMT进程及Wnt/β-catenin通路抑制喉癌恶性进展[D]. 合肥: 安徽医科大学, 2019. [65] 宋毅昌. Notch信号通路在增强骨肉瘤化学治疗药物疗效中的机制[J]. 中南大学学报(医学版), 2020, 45(10): 1234-1240. doi:10.11817/j.issn.1672-7347.2020.190147. SONG Yichang. Mechanism of the Notch signaling pathway in enhancing the efficacy of chemotherapy drugs in osteosarcoma[J]. Journal of Central South University(Medical Science), 2020, 45(10): 1234-1240. doi:10.11817/j.issn.1672-7347.2020.190147. [66] Majidinia M, Alizadeh E, Yousefi B, et al. Downregulation of Notch signaling pathway as an effective chemosensitizer for cancer treatment[J]. Drug Res(Stuttg), 2016, 66(11): 571-579. doi:10.1055/s-0042-111821. [67] Ashry R, Elhussiny M, Abdellatif H, et al. Genetic interpretation of the impacts of honokiol and EGCG on apoptotic and self-renewal pathways in HEp-2 human laryngeal CD44high cancer stem cells[J]. Nutr Cancer, 2022, 74(6):2152-2173. doi:10.1080/01635581.2021.1981404. [68] 管玲男, 刘哲, 王欢, 等. JAK/STAT3信号通路及其抑制剂在肿瘤治疗领域的研究进展[J]. 中国药学杂志, 2018, 53(23): 1973-1977. GUAN Lingnan, LIU Zhe, WANG Huan, et al. JAK/STAT3 signaling pathway and its inhibitors in tumor therapy[J]. Chinese Pharmaceutical Journal, 2018, 53(23): 1973-1977. [69] 张炜, 魏珍星, 张杨, 等. 高迁移率蛋白-1对喉癌Hep-2细胞顺铂耐药的作用机制[J]. 中华实用诊断与治疗杂志, 2021, 35(2): 116-121. doi:10.13507/j.issn.1674-3474.2021.02.003. ZHANG Wei, WEI Zhenxing, ZHANG Yang, et al. Mechanism of high mobility protein-1 on resistance of laryngeal carcinoma Hep-2 cells to cisplatin[J]. Journal of Chinese Practical Diagnosis and Therapy, 2021, 35(2): 116-121. doi:10.13507/j.issn.1674-3474.2021.02.003. [70] 郭洁, 张晓双. 太白山藤梨根提取物对喉癌干细胞侵袭和转移的影响[J]. 临床合理用药杂志, 2020, 13(12): 89-92. doi:10.15887/j.cnki.13-1389/r.2020.12.042. [71] Kyurkchiyan SG, Popov TM, Mitev VI, et al. The role of miRNAs and lncRNAs in laryngeal squamous cell carcinoma-a mini-review[J]. Folia Med(Plovdiv), 2020, 62(2): 244-252. doi:10.3897/folmed.62.e49842. [72] 何丹, 王苹, 李亚纯, 等. MiRNA210通过NUPR1基因靶向调控喉癌多药耐药性的研究[J]. 中国实验诊断学, 2019, 23(3): 511-515. doi:10.3969/j.issn.1007-4287.2019.03.053. HE Dan, WANG Ping, LI Yachun, et al. The study of miRNA210 regulation in Multidrug resistance of laryngeal cancer through targeted NUPR1 gene[J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(3): 511-515. doi:10.3969/j.issn.1007-4287.2019.03.053. [73] Lin XJ, Liu H, Li P, et al. miR-936 suppresses cell proliferation, invasion, and drug resistance of laryngeal squamous cell carcinoma and targets GPR78[J]. Front Oncol, 2020, 4(10): 60. doi:10.3389/fonc.2020.00060. [74] Chang YC, Jan CI, Peng CY, et al. Activation of microRNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable prognostic value in head and neck squamous cell carcinomas[J]. Oncotarget, 2015, 6(27): 24002-24016. doi:10.18632/oncotarget.4365. [75] 郭海啸, 栾婷, 王海峰, 等. 肿瘤干细胞在化疗耐药机制中的研究进展[J]. 实用医学杂志, 2019, 35(1): 163-166. doi:10.3969/j.issn.1006-5725.2019.01.037. [76] Wei XD, He J, Wang JY, et al. MPEG-CS/bmi-1RNAi nanoparticles synthesis and its targeted inhibition effect on CD133+ laryngeal stem cells[J]. J Nanosci Nanotechnol, 2018, 18(3): 1577-1584. doi:10.1166/jnn.2018.14303. [77] Zhang YX, Sun XC. Role of focal adhesion kinase in head and neck squamous cell carcinoma and its therapeutic prospect[J]. Onco Targets Ther, 2020, 13: 10207-10220. doi:10.2147/OTT.S270342. |
[1] | 李利杰,田秀芬. CO2激光联合低温等离子治疗早期声门型喉癌40例[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 79-85. |
[2] | 王晓亭,陈正侬,易红良. 利用RNA-seq探讨谷氨酰胺剥夺对喉癌细胞转录组的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 26-31. |
[3] | 冯成敏,敬一丹综述刘海,王冰审校. 咽喉部鳞状细胞癌细胞系[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 113-124. |
[4] | 李艳杰, 贾建,杨萍,万保罗. 肿瘤异常蛋白在喉癌临床诊断中的价值研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 70-74. |
[5] | 陈国平,傅敏仪,叶飞,徐建慧. 早期声门型喉癌钬激光与CO2激光手术对比研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 8-11. |
[6] | 吴允刚,张辉,孙聚兴,刘涛,王彩华,杨欣欣,马林祥,李笑颖,庞太忠,李晓瑜. 环甲膜联合喉室入路切除T1B声门型喉癌临床疗效分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 30-34. |
[7] | 石玉琦,佘翠平,张庆丰,刘得龙,焦梦思. 早期声门型喉癌低温等离子射频术后喉部感染诊治经验与教训[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 129-134. |
[8] | 周恩,肖禹,肖旭平. 等离子射频消融技术在早期声门型喉癌治疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 9-15. |
[9] | 肖旭平,周恩,肖禹. 等离子点状激发射频消融技术治疗早期声门型喉癌(Tis-T1b)31例[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 60-66. |
[10] | 崔小缓,李丽娜,张延平,蒋兴旺,毕欣欣,冉桃桃,吴莹莹,刘雅莉. 改良负压封闭引流装置在难治性咽瘘治疗中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 49-53. |
[11] | 庞振文,黄愉峰,杨爱芳,曾先捷. 喉癌患者术前中性粒细胞/淋巴细胞比值与淋巴结转移的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 58-62. |
[12] | 谭凤武,邓亚萍,黎可华. 低温等离子射频消融与CO2激光手术治疗早期声门型喉癌疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 63-71. |
[13] | 青晓艳, 徐义全综述李超审校. 甲状腺未分化癌的分子机制研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 26-31. |
[14] | 徐进敬,胡京华,吴元庆,邓毅,喻唯唯. CO2激光显微手术在喉癌前病变和早期声门型喉癌中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 129-133. |
[15] | 罗露,周恩,欧阳思,陈义,肖旭平,王继华. 42例喉癌患者血清 microRNAlet-7a 水平的变化及意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 96-100. |
|