山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (6): 7-12.doi: 10.6040/j.issn.1673-3770.0.2022.237

• 研究进展 • 上一篇    

白内障术后人工晶状体轴向位置预测与稳定性相关影响因素

孙极,李灿   

  1. 重庆医科大学附属第一医院 眼科, 重庆 400016
  • 发布日期:2022-12-07
  • 通讯作者: 李灿. E-mail:892496605@qq.com

Prediction and stability of axial intraocular lens position after cataract surgery

SUN JiOverview,LI CanGuidance   

  1. Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
  • Published:2022-12-07

摘要: 随着眼球生物测量技术的进步,白内障术后人工晶状体位置预测已是影响白内障术后屈光误差的关键因素,部分眼球解剖参数被发现与其位置预测有关,与此同时预测方法得以不断进步。而术后位于囊袋的人工晶状体位置不是一成不变的,大多数人工晶状体在术后会经历线性运动,随后才相对稳定,其位置变化受到眼球解剖结构、手术、人工晶状体特性、囊袋等相关因素影响。人工晶状体轴向位置变化会带来屈光改变,其稳定性对患者视觉质量至关重要。就白内障术后人工晶状体轴向位置预测与稳定性相关影响因素进行综述。

关键词: 白内障, 人工晶状体轴向位置, 有效晶状体位置, 人工晶状体, 屈光误差, 视觉质量

Abstract: As the eyeball biometric technology makes progress, a key factor affecting the refractive error after cataract surgery is reflected in the position prediction of intraocular lens after cataract surgery. Some eyeball anatomical parameters reportedly influenced the postoperative prediction of the intraocular lens. Several prediction methods have been developed. However, most intraocular lenses move linearly and stabilize after surgery instead of remaining fixed in the initial position. The change in the lens position is influenced by the eye anatomy, surgical procedure, intraocular lens characteristics, capsular bag, and other related factors. The refractive changes are caused by the changes in the axial position of the intraocular lens, and its stability is crucial to the quality of the patient's vision. This study aimed to review the methods of predicting the axial position of the intraocular lens after cataract surgery and the factors related to its stability.

Key words: Cataract, Axial intraocular lens position, Effective lens position, Intraocular lens, Refractive error, Visual quality

中图分类号: 

  • R776.1
[1] Norrby S. Sources of error in intraocular lens power calculation[J]. J Cataract Refract Surg, 2008, 34(3): 368-376. doi:10.1016/j.jcrs.2007.10.031.
[2] Olsen T. Calculation of intraocular lens power: a review[J]. Acta Ophthalmol Scand, 2007, 85(5): 472-485. doi:10.1111/j.1600-0420.2007.00879.x.
[3] Li TY, Stein J, Nallasamy N. AI-powered effective lens position prediction improves the accuracy of existing lens formulas[J]. Br J Ophthalmol, 2022, 106(9): 1222-1226. doi:10.1136/bjophthalmol-2020-318321.
[4] Plat J, Hoa D, Mura F, et al. Clinical and biometric determinants of actual lens position after cataract surgery[J]. J Cataract Refract Surg, 2017, 43(2): 195-200. doi:10.1016/j.jcrs.2016.11.043.
[5] Olsen T. Prediction of the effective postoperative(intraocular lens)anterior chamber depth[J]. J Cataract Refract Surg, 2006, 32(3): 419-424. doi:10.1016/j.jcrs.2005.12.139.
[6] Ning XN, Yang YH, Yan H, et al. Anterior chamber depth- a predictor of refractive outcomes after age-related cataract surgery[J]. BMC Ophthalmol, 2019, 19(1): 134. doi:10.1186/s12886-019-1144-8.
[7] Yoo YS, Whang WJ, Kim HS, et al. Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position[J]. Medicine(Baltimore), 2019, 98(50): e18026. doi:10.1097/MD.0000000000018026.
[8] Shajari M, Sonntag R, Niermann T, et al. Determining and comparing the effective lens position and refractive outcome of a novel rhexis-fixated lens to established lens designs[J]. Am J Ophthalmol, 2020, 213: 62-68. doi:10.1016/j.ajo.2020.01.009.
[9] Eom Y, Song JS, Kim HM. Spectacle plane add power of multifocal intraocular lenses according to effective lens position[J]. Can J Ophthalmol, 2017, 52(1): 54-60. doi:10.1016/j.jcjo.2016.07.026.
[10] 李璟, 张辉, 王晶. 不同人工晶状体植入对视觉质量影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 90-95. doi:10.6040/j.issn.1673-3770.0.2021.392. LI Jing, ZHANG Hui, WANG Jing. A clinical study on the effect of using different intraocular lens implants on visual quality[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 90-95. doi:10.6040/j.issn.1673-3770.0.2021.392.
[11] 胡颖峰, 贾玉叶, 王艳, 等. Kappa与Alpha角在白内障手术前后的变化分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 83-89. doi: 10.6040/j.issn.1673-3770.0.2021.365. HU Yingfeng, JIA Yuye, WANG Yan, et al. Changes of kappa angle and alpha angle before and after cataract surgery[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 83-89. doi: 10.6040/j.issn.1673-3770.0.2021.365.
[12] Klijn S, Sicam VADP, Reus NJ. Long-term changes in intraocular lens position and corneal curvature after cataract surgery and their effect on refraction[J]. J Cataract Refract Surg, 2016, 42(1): 35-43. doi:10.1016/j.jcrs.2015.08.015.
[13] Fukumitsu H, Camps VJ, Miraflores S, et al. Relationship between medium-term changes in intraocular lens position and refraction after cataract surgery with two different models of monofocal lenses[J]. J Clin Med, 2021, 10(17): 3856. doi:10.3390/jcm10173856.
[14] Hu CY, Jian JH, Cheng YP, et al. Analysis of crystalline lens position[J]. J Cataract Refract Surg, 2006, 32(4): 599-603. doi:10.1016/j.jcrs.2006.01.016.
[15] Fukumitsu H, Camps VJ, Miraflores S, et al. Could anatomical changes occurring with cataract surgery have a clinically significant effect on effective intraocular lens position? [J]. Int Ophthalmol, 2021, 41(5): 1895-1907. doi:10.1007/s10792-021-01751-y.
[16] Schröder S, Langenbucher A. Relationship between effective lens position and axial position of a thick intraocular lens[J]. PLoS One, 2018, 13(6): e0198824. doi:10.1371/journal.pone.0198824.
[17] Teshigawara T, Meguro A, Mizuki N. Relationship between postoperative intraocular lens shift and postoperative refraction change in cataract surgery using three different types of intraocular lenses[J]. Ophthalmol Ther, 2021, 10(4): 989-1002. doi:10.1007/s40123-021-00390-x.
[18] Ozates S, Kiziltoprak H, Koc M, et al. Intraocular lens position in combined phacoemulsification and vitreoretinal surgery[J]. Retina, 2018, 38(11): 2207-2213. doi:10.1097/IAE.0000000000001840.
[19] Findl O, Hirnschall N, Draschl P, et al. Effect of manual capsulorhexis size and position on intraocular lens tilt, centration, and axial position[J]. J Cataract Refract Surg, 2017, 43(7): 902-908. doi:10.1016/j.jcrs.2017.04.037.
[20] Li SX, Hu YP, Guo R, et al. The effects of different shapes of capsulorrhexis on postoperative refractive outcomes and the effective position of the intraocular lens in cataract surgery[J]. BMC Ophthalmol, 2019, 19(1): 59. doi:10.1186/s12886-019-1068-3.
[21] Miháltz K, Vécsei-Marlovits PV. The impact of visual axis position on the optical quality after implantation of multifocal intraocular lenses with different asphericity values[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(3): 673-683. doi:10.1007/s00417-020-05052-5.
[22] Bang SP, Yoo YS, Jun JH, et al. Effects of residual anterior lens epithelial cell removal on axial position of intraocular lens after cataract surgery[J]. J Ophthalmol, 2018(19): 9704892. doi:10.1155/2018/9704892.
[23] Wirtitsch MG, Findl O, Menapace R, et al. Effect of haptic design on change in axial lens position after cataract surgery[J]. J Cataract Refract Surg, 2004, 30(1): 45-51. doi:10.1016/S0886-3350(03)00459-0.
[24] Cabeza-Gil I, Pérez-Gracia J, Remón L, et al. Effect of haptic geometry in C-loop intraocular lenses on optical quality[J]. J Mech Behav Biomed Mater, 2021, 114: 104165. doi:10.1016/j.jmbbm.2020.104165.
[25] Cabeza-Gil I, Ariza-Gracia MÁ, Remón L, et al. Systematic study on the biomechanical stability of C-loop intraocular lenses: approach to an optimal design of the haptics[J]. Ann Biomed Eng, 2020, 48(4): 1127-1136. doi:10.1007/s10439-019-02432-9.
[26] Choi M, Lazo MZ, Kang MJ, et al. Effect of number and position of intraocular lens haptics on anterior capsule contraction: a randomized, prospective trial[J]. BMC Ophthalmol, 2018, 18(1): 78. doi:10.1186/s12886-018-0742-1.
[27] Hayashi K, Hayashi H. Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule[J]. J Cataract Refract Surg, 2005, 31(2): 337-342. doi:10.1016/j.jcrs.2004.06.042.
[28] Savini G, Barboni P, Ducoli P, et al. Influence of intraocular lens haptic design on refractive error[J]. J Cataract Refract Surg, 2014, 40(9): 1473-1478. doi:10.1016/j.jcrs.2013.12.018.
[29] Zhong XJ, Long EP, Chen W, et al. Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients: a randomized controlled trial[J]. BMC Ophthalmol, 2016, 8(16): 100. doi:10.1186/s12886-016-0283-4.
[30] Landers J, Liu H. Choice of intraocular lens may not affect refractive stability following cataract surgery[J]. Clin Exp Ophthalmol, 2005, 33(1): 34-40. doi:10.1111/j.1442-9071.2005.00940.x.
[31] Rajesh SJ. Study on buckling of intraocular lens haptic in 2 types of intraocular lens material and its effect on vision[J]. Rom J Ophthalmol, 2020, 64(4): 387-395. doi:10.22336/rjo.2020.60.
[32] Petternel V, Menapace R, Findl O, et al. Effect of optic edge design and haptic angulation on postoperative intraocular lens position change[J]. J Cataract Refract Surg, 2004, 30(1): 52-57. doi:10.1016/S0886-3350(03)00556-X.
[33] Maedel S, Evans JR, Harrer-Seely A, et al. Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery[J]. Cochrane Database Syst Rev, 2021, 16(8): CD012516. doi:10.1002/14651858.CD012516.pub2.
[34] Koeppl C, Findl O, Kriechbaum K, et al. Change in IOL position and capsular bag size with an angulated intraocular lens early after cataract surgery[J]. J Cataract Refract Surg, 2005, 31(2): 348-353. doi:10.1016/j.jcrs.2004.04.063.
[35] Xie TS, Liu X, Zhu J, et al. Effect of capsular tension ring on optical and multifunctional lens position outcomes: a systematic review and a meta-analysis[J]. Int Ophthalmol, 2021, 41(12): 3971-3984. doi:10.1007/s10792-021-01969-w.
[36] Vass C, Menapace R, Schmetterer K, et al. Prediction of pseudophakic capsular bag diameter based on biometric variables[J]. J Cataract Refract Surg, 1999, 25(10): 1376-1381. doi:10.1016/s0886-3350(99)00204-7.
[1] 段练,孟凡兰述评党光福审校. 干眼对屈光性白内障手术的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 1-6.
[2] 胡尊霞,司马晶,秦波,曹加国,潘伟. 接触镜使用与否在Nd∶YAG激光后囊切开术中的对比研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 41-45.
[3] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[4] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[5] 李璟,张辉,王晶. 不同人工晶状体植入对视觉质量影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 90-95.
[6] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[7] 厉斌,方学军,吴德,黄敏. 基于NK公式和KS公式预测ICL术后早期拱高的一致性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 33-41.
[8] 海玥,廖萱. Catquest-9SF的研究进展及临床应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 142-146.
[9] 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130.
[10] 刘少华,郝琳琳,马广凤,侯静,张晗. 喀什与济南地区白内障患者眼部生物学参数分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 110-113.
[11] 魏佩佩,李灿. 多焦点人工晶体植入术后的视觉质量及并发症[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 141-146.
[12] 王宗沂,曲进锋. 白内障术后后部缺血性视神经病变一例并文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 56-59.
[13] 张丰菊,李玉. 角膜屈光手术术前的筛查要点[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 7-12.
[14] 赵旸,傅艳燕,吴小影,尹叶薇,向爱群,卢颖,杜凯旋,李元君,胡涂,李杏莉,文丹. 中低度近视SMILE术后超早期视觉质量变化的研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 42-46.
[15] 岳沙利,邓应平. 有晶体眼后房型人工晶体植入术矫正RK术后屈光回退一例[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 85-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!