山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (1): 94-104.doi: 10.6040/j.issn.1673-3770.0.2021.481

• 论著 • 上一篇    

基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证

刘通1,林玮2,冯萌2,杨依1,刘婷婷3,张敏1   

  1. 山东省医学科学院)临床与基础医学院(基础医学研究所), 山东 济南 250032;
    3.山东第一医科大学附属眼科医院(山东省眼科医院)眼底病内科, 山东 济南 250021
  • 发布日期:2023-02-06
  • 通讯作者: 张敏. E-mail:zhangmin-wen@163.com
  • 基金资助:
    国家自然科学基金项目(81860719);国家重点研发计划(2016YFC1305504)

Analysis of the effect of berberine on diabetic retinopathy in the immune microenvironment based on network pharmacology and experimental verification

LIU Tong1, LIN Wei2, FENG Meng2, YANG Yi1, LIU Tingting3, ZHANG Min1   

  1. 1. Basic Medical School, Xizang Minzu University, Xianyang 712082, Shan xi China;
    2. School of Clinical and Basic Medicine(Institute of Basic Medicine), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250032, Shandong, China;
    3. Internal Medicine of Fundus Diseases, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, Shandong, China
  • Published:2023-02-06

摘要: 目的 通过网络药理学和动物实验方法研究小檗碱(BBR)治疗糖尿病视网膜病变(DR)的免疫作用机制。 方法 利用中药数据库(HERB)获得BBR化学成分及其潜在靶点;DisGeNET和GeneCards数据库判断与DR发病相关的靶基因;随后使用String数据库与Cytoscape软件相结合绘制出蛋白相互作用网络,网络拓扑学分析筛选出BBR作用于DR的靶点;然后利用Metascape生物信息学数据库对这些作用靶点进行GO细胞组分、生物学过程、分子功能分析和KEGG通路分析;接着用Cytoscape构建并分析BBR“靶点-通路”网络图;借助Pymol软件对药物配体和靶点进行分子对接的结合能力预测;最后构建糖尿病小鼠模型,用BBR 100 mg/(kg·d)灌胃治疗8周后,取视网膜组织切片染色检测病变程度。流式细胞术检测糖尿病小鼠眼和淋巴结CD4+T细胞、IL-17+T细胞的比例。 结果 从中药数据库筛选出67个BBR与DR共有的靶点,其中INS、IL-6、CASP3、TNF、VEGFA等是BBR作用DR的核心靶点。GO分析结果表明,BBR能通过氧化应激和细胞凋亡信号通路在DR治疗中发挥作用。KEGG通路富集分析显示,BBR的抑制免疫炎症的潜在靶点通路主要是IL-17信号通路和Th17分化通路且核心靶点为RELA、MAPK1、IL-6、NFKBIA、TNF。分子对接结果表明BBR对RELA、MAPK1、IL-6有较强结合力。组织病理学检测发现BBR治疗后糖尿病小鼠视网膜病变减轻,且淋巴结和眼组织CD4+T、IL-17+T细胞数量明显低于治疗组。 结论 BBR可通过调控Th17/IL-17信号通路,抑制DR的炎症反应,揭示BBR治疗DR的新的免疫机制,为深入探究BBR治疗DR的药理靶点及机制提供了理论依据。

关键词: 糖尿病视网膜病变, 小檗碱, 免疫微环境, 网络药理学, 分子对接

Abstract: Objective To study the immune mechanism of berberine(BBR)in the treatment of diabetic retinopathy(DR)using network pharmacology and animal model experiments. Methods Chemical constituents and potential BBR targets were obtained from a traditional Chinese medicine database(HERB), target genes related to DR pathogenesis were identified in the DisGeNET and GeneCards databases, and the protein interaction network was drawn using a combination of the String database and Cytoscape software. The BBR target(s)acting on DR were screened out by network topology analysis and the GO cell composition, biological processes, molecular function, and KEGG pathways of these targets were analyzed using the Metascape bioinformatics database. Following this, a BBR “target-path” network diagram was constructed and analyzed with Cytoscape, the molecular docking ability of drug ligands and targets was predicted with Pymol, and, finally, a diabetic mouse model was established, treated with BBR 100 mg/(kg·d)for 8 weeks, and then had retinal tissue sections taken and stained to detect the degree of pathological change. The proportion of CD4+ and IL-17+ T cells in the eyes and lymph nodes of diabetic mice was determined by flow cytometry. Results 67 common BBR and DR targets were screened from the traditional Chinese medicine database, including INS, IL-6, CASP3, TNF and VEGFA as the core BBR targets which affect DR. The GO analysis suggested that BBR could play a role in the treatment of DR through response to oxidative stress and regulation of apoptotic signaling pathway. KEGG pathway enrichment analysis identified the IL-17 signaling and Th17 differentiation pathways as potential target pathways for BBR suppression of immune inflammation. The core targets identified were RELA, MAPK1, IL-6, NFKBIA, and TNF. Molecular docking showed a strong binding force between BBR and RELA, MAPK1, and IL-6. The tissue sections from diabetic mice revealed alleviated retinal pathology following BBR treatment, and the number of CD4+ and IL-17+ T cells were significantly lower in the treatment group. Conclusion BBR can inhibit the DR inflammatory response by regulating the Th17/IL-17 signaling pathway. This is a newly identified immune mechanism of BBR, and provides a theoretical basis for further exploration of the pharmacological targets and mechanisms of BBR in the treatment of DR.

Key words: Diabetic retinopathy, Berberine, Immune microenvironment, Network pharmacology, Molecular docking

中图分类号: 

  • R774.1
[1] 丁秋爱,游志鹏.糖尿病视网膜病变与免疫炎症关系的研究进展[J].南昌大学学报(医学版), 2017, 57(6):97-100. doi:10.13764/j.cnki.ncdm.2017.06.024 DING Qiuai, YOU Zhipeng. Research progress on the relationship between diabetic retinopathy and immune inflammation[J]. Journal of Nanchang University(Medical Sciences), 2017, 57(6): 97-100. doi:10.13764/j.cnki.ncdm.2017.06.024
[2] Cui J, Ren JP, Chen DN, et al. Prevalence and associated factors of diabetic retinopathy in Beijing, China: a cross-sectional study[J]. BMJ Open, 2017, 7(8): e015473. doi:10.1136/bmjopen-2016-015473
[3] Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor(anti-VEGF)in the management of proliferative diabetic retinopathy[J]. Drugs Context, 2018, 7: 212532. doi:10.7573/dic.212532
[4] Whitcup SM, Cidlowski JA, Csaky KG, et al. Pharmacology of corticosteroids for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 1-12. doi:10.1167/iovs.17-22259
[5] Guo J, Chen H, Zhang X, et al. The effect of berberine on metabolic profiles in type 2 diabetic patients: a systematic review and meta-analysis of randomized controlled trials[J]. Oxid Med Cell Longev, 2021: 2074610. doi: 10.1155/2021/2074610
[6] Gong J, Li J, Dong H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88[J]. BMC Complement Altern Med, 2019, 19(1): 314. doi:10.1186/s12906-019-2710-6
[7] Boezio B, Audouze K, Ducrot P, et al. Network-based approaches in pharmacology[J]. Mol Inform, 2017, 36(10). doi:10.1002/minf.201700048
[8] 蒋晓梅, 刘翀. 甘草甜素对糖尿病视网膜病变的神经保护作用[J]. 中国药科大学学报, 2020, 51(6): 711-717. doi: 10.11665/j.issn.1000-5048.20200610 JIANG Xiaomei, LIU Chong. Neuroprotective effect of glycyrrhizin on diabetic retinopathy[J]. Journal of China Pharmaceutical University, 2020, 51(6): 711-717. doi: 10.11665/j.issn.1000-5048.20200610
[9] Yin Z, Tan R, Yuan T, et al. Berberine prevents diabetic retinopathy through inhibiting HIF-1α/VEGF/NF-κ B pathway in db/db mice[J]. Pharmazie, 2021, 76(4): 165-171. doi:10.1691/ph.2021.01012
[10] Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus[J]. Antioxid Redox Signal, 2017, 26(10): 501-518. doi:10.1089/ars.2016.6755
[11] Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6). doi:10.26402/jpp.2019.6.01
[12] Chen LX, Cui Y, Li BY, et al. Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models[J]. Am J Physiol Heart Circ Physiol, 2020, 318(3): 519-533. doi:10.1152/ajpheart.00473.2019
[13] Tzavlaki K, Moustakas A. TGF-β signaling[J]. Biomolecules, 2020, 10(3): 487. doi:10.3390/biom10030487
[14] 赖思佳, 王达洋, 李天力, 等. 基于分子对接和网络药理学的五指毛桃-贯叶金丝桃治疗微血管性心绞痛的机制研究[J]. 中国中药杂志, 2021, 46(24): 6474-6483. doi:10.19540/j.cnki.cjcmm.20210902.401 LAI Sijia, WANG Dayang, LI Tianli, et al. Mechanism of Ficus hirta-Hypericum perforatum in treatment of microvascular angina based on network pharmacology and molecular docking[J]. China Journal of Chinese Materia Medica, 2021, 46(24): 6474-6483. doi:10.19540/j.cnki.cjcmm.20210902.401
[15] 张潇文, 刘爱民, 赵晶晶, 等. 采用网络药理学和分子对接技术研究麻黄连翘赤小豆汤治疗湿疹的作用机制[J]. 中国中药杂志, 2021, 46(4): 894-901. doi:10.19540/j.cnki.cjcmm.20201117.401 ZHANG Xiaowen, LIU Aimin, ZHAO Jingjing, et al. Mechanism of Mahuang Lianqiao Chixiaodou Decoction in treating eczema by network pharmacology and molecular docking technology[J]. China Journal of Chinese Materia Medica, 2021, 46(4): 894-901. doi:10.19540/j.cnki.cjcmm.20201117.401
[16] Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11: 583687. doi:10.3389/fimmu.2020.583687
[17] Cao YL, Zhang FQ, Hao FQ. Th1/Th2 cytokine expression in diabetic retinopathy[J]. Genet Mol Res, 2016, 15(3): doi:10.4238/gmr.15037311
[18] 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150. doi: 10.6040/j.issn.1673-3770.0.2020.484 DI Yu, LI Ying, Research progress on the mechanism of inflammatory reaction and anti-inflammatory treatment of dry eyes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2):144-150. doi: 10.6040/j.issn.1673-3770.0.2020.484
[19] Wu B, Wan YS. Molecular control of pathogenic Th17 cells in autoimmune diseases[J]. Int Immunopharmacol, 2020, 80: 106187. doi:10.1016/j.intimp.2020.106187
[20] Guzmán-Flores JM, Ramírez-Emiliano J, Pérez-Vázquez V, et al. Th17 and regulatory T cells in patients with different time of progression of type 2 diabetes mellitus[J]. Cent Eur J Immunol, 2020, 45(1): 29-36. doi:10.5114/ceji.2020.94670
[21] Yan A, Zhang Y, Wang X, et al. Interleukin 35 regulates interleukin 17 expression and T helper 17 in patients with proliferative diabetic retinopathy[J]. Bioengineered. 2022, 13(5):13293-13299. doi: 10.1080/21655979.2022.2080367
[22] Liu SL, Lin YU, Liu X. Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression[J]. Exp Ther Med, 2016, 11(1): 257-262. doi:10.3892/etm.2015.2877
[23] 周宇,陈俞兵,胡佳雯. 益气活血利湿汤对糖尿病视网膜病变模型大鼠炎症因子及视神经保护作用[J].浙江中西医结合杂志, 2019, 29(8): 627-631, 704. doi: 10.3969/j.issn.1005-4561.2019.08.005 ZHOU Yu, CHEN Yubing, HU Jiawen. Protective effect of Yiqi Huoxue Lishi decoction on inflammatory factors and optic nerve in diabetic retinopathy rats[J]. Zhejiang Journal of Integrated traditional Chinese and Western Medicine, 2019, 29(8): 627-631, 704. doi: 10.3969/j.issn.1005-4561.2019.08.005
[24] Jiang T, Chang Q, Cai J, et al. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy[J]. Oxid Med Cell Longev, 2016: 3528274. doi:10.1155/2016/3528274
[25] 朱文魁. 增生型糖尿病性视网膜病变术前玻璃体内注射曲安奈德的价值[J]. 眼科新进展, 2016, 36(4): 359-361. doi:10.13389/j.cnki.rao.2016.0097 ZHU Wenkui. Application of intravitreal injection of triamcinolone acetonide before vitrectomy for PDR[J]. Recent Advances in Ophthalmology, 2016, 36(4): 359-361. doi:10.13389/j.cnki.rao.2016.0097
[26] Floyd JL, Grant MB. The gut-eye axis: lessons learned from murine models[J]. Ophthalmol Ther, 2020, 9(3): 499-513. doi:10.1007/s40123-020-00278-2
[27] Horai R, Caspi RR. Microbiome and autoimmune uveitis[J]. Front Immunol, 2019, 10: 232. doi:10.3389/fimmu.2019.00232
[28] Chaiwiang N, Poyomtip T. Microbial dysbiosis and microbiota-gut-retina axis: the lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity[J]. Acta Microbiol Immunol Hung, 2019, 66(4): 541-558. doi:10.1556/030.66.2019.038
[29] 于文燕. 热休克刺激诱导NFKBIA基因表达的转录后调控机制研究[D]. 广州: 南方医科大学, 2012
[30] Liang WJ, Yang HW, Liu HN, et al. HMGB1 upregulates NF-kB by inhibiting IKB-α and associates with diabetic retinopathy[J]. Life Sci, 2020, 1(15): 117146. doi:10.1016/j.lfs.2019.117146
[31] Zhang T, Ma C, Zhang Z, et al. NF-κB signaling in inflammation and cancer[J]. Med Comm(2020). 2021, 2(4): 618-653. doi: 10.1002/mco2.104
[32] Kunkl M, Mastrogiovanni M, Porciello N, et al. CD28 individual signaling up-regulates human IL-17A expression by promoting the recruitment of RelA/NF-κB and STAT3 transcription factors on the proximal promoter[J]. Front Immunol, 2019, 10: 864. doi:10.3389/fimmu.2019.00864
[33] Yang J, Fan GH, Wadzinski BE, et al. Protein phosphatase 2A interacts with and directly dephosphorylates RelA[J]. J Biol Chem, 2001, 276(51): 47828-47833. doi:10.1074/jbc.M106103200
[34] Takeuchi H, Hirano T, Whitmore SE, et al. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65[J]. PLoS Pathog, 2013, 9(4): e1003326. doi:10.1371/journal.ppat.1003326
[35] Xu JP, Zhong HB, Cui L, et al. Expression of wild-type p53-induced phosphatase 1 in diabetic epiretinal membranes[J]. Oncotarget, 2017, 8(22): 35532-35541. doi:10.18632/oncotarget.16683
[36] Chew J, Biswas S, Shreeram S, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling[J]. Nat Cell Biol, 2009, 11(5): 659-666. doi:10.1038/ncb1873
[37] Powolny-Budnicka I, Riemann M, Tänzer S, et al. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells[J]. Immunity, 2011, 34(3): 364-374. doi:10.1016/j.immuni.2011.02.019
[38] Xu S, Cao X. Interleukin-17 and its expanding biological functions[J]. Cell Mol Immunol, 2010, 7(3): 164-174. doi:10.1038/cmi.2010.21
[39] Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling[J]. Cytokine, 2013, 64(2): 477-485. doi:10.1016/j.cyto.2013.07.022
[40] Noubade R, Krementsov DN, del Rio R, et al. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis[J]. Blood, 2011, 118(12): 3290-3300. doi:10.1182/blood-2011-02-336552
[1] 王娇娇,李苗宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99.
[2] 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112.
[3] 王露,谢慧,卢美迪,邓新星,李清韵. 基于网络药理学和分子对接探讨“川芎-白芷”药对治疗鼻窦炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 154-164.
[4] 姜雪莲, 张静月, 卫旭东. 基于Meta分析桥接网络药理学的鼻渊通窍颗粒治疗慢性鼻窦炎的疗效评价及潜在机制研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 226-236.
[5] 王惠, 王俊,孙乙,于腾飞,朱玉广, 朱艳. 玻璃体腔注射HGF-MSCs对糖尿病大鼠视网膜HGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 72-77.
[6] 王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然. 基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 46-55.
[7] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[8] 刘建波,张环. 超声乳化联合玻璃体腔药物注射治疗白内障合并糖尿病性黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 99-104.
[9] 李宝华,刘平,王新. β-榄香烯影响糖尿病大鼠视网膜中IL-1β、ICAM-1表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 111-114.
[10] 刘万智,陈珺,樊长春. 康柏西普治疗增生性糖尿病视网膜病变[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 88-91.
[11] 周学义,李一鸣,王美菊,张苑苑,张历浊. 25+微创玻璃体视网膜手术联合玻璃体腔注射雷珠单抗治疗增生型糖尿病视网膜病变的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 87-89.
[12] 周玮琰,王洪亚,杜秀娟,董卫红. 甘糖酯对糖尿病大鼠视网膜病变中血管生成因子VEGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 90-95.
[13] 邵娜,张晗. 糖尿病患者行白内障超声乳化术后视力及眼底的变化[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 83-87.
[14] 李俊英. 瑞舒伐他汀联合非诺贝特对老年糖尿病视网膜病变患者血管内皮功能的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 72-75.
[15] 刘志高, 颜世龙, 胡尊霞, 孙同鑫, 杨明, 王玉. 济南市农村白内障患者糖尿病及糖尿病视网膜眼底病变患病率调查分析[J]. 山东大学耳鼻喉眼学报, 2015, 29(1): 38-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!