山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 46-55.doi: 10.6040/j.issn.1673-3770.0.2021.134

• • 上一篇    下一篇

基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制

王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然   

  1. 北京中医药大学东直门医院 耳鼻喉科, 北京 100700
  • 发布日期:2021-09-29
  • 通讯作者: 闫占峰. E-mail:15210682430@163.com; 刘巧平. E-mail:1599278954@qq.com
  • 基金资助:
    国家自然科学基金(8190151365);北京中医药大学青年教师项目(2019-JYB-JS-052)

A study on the mechanism of action of the Xiaoqinglong Decoction in treating allergic rhinitis based on network pharmacology

WANG Xin, LIU Qiaoping, YAN Zhanfeng, LIU Siming, ZHU Yajing, DING Qian, ZHANG Ying, TIAN Yuan, ZHANG Jingran   

  1. Department of Otolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
  • Published:2021-09-29

摘要: 目的 基于网络药理学方法分析小青龙汤治疗过敏性鼻炎的作用机制,为临床运用及后期研究提供方向和参考。 方法 运用多个数据平台,分析小青龙汤对过敏性鼻炎的作用机制。在TCMSP数据库通过筛选OB、DL值,得到小青龙汤的有效化学成分及其作用靶点后使用Cytoscape3.7.1软件绘制小青龙汤有效成分-靶点网络关系图,并筛选出药物的关键成分。在Gencards、OMIM数据库获取过敏性鼻炎的潜在靶点。在GEO数据库获得有差异的基因,并将靶点纳入下一步的分析。通过在线画图软件,绘制韦恩图,提取小青龙汤作用靶点和过敏性鼻炎疾病靶点的交集靶点,而后对交集靶点进一步分析。在String平台对交集靶点进行蛋白相互作用分析,构建PPI网络,并将PPI网络关系导入Cytoscape3.7.1软件,筛选得到小青龙汤治疗过敏性鼻炎的核心靶点。采用Metascape平台分析小青龙汤-过敏性鼻炎交集靶点参与的生物过程及通路,得到其GO功能注释和KEGG通路富集分析数据后,使用OriginPro2020对其结果进行可视化分析,并运用Cytoscape3.7.1软件构建“小青龙汤-过敏性鼻炎交集靶点-信号通路”网络图。对关键成分和核心靶点用AutoDock软件进行分子对接验证。 结果 小青龙汤治疗过敏性鼻炎的关键化学成分为槲皮素、山柰酚、柚皮素等,核心靶点有STAT3、IL-6、TNF等。小青龙汤治疗过敏性鼻炎的信号通路主要作用于TNF信号通路、MAPK信号通路、PI3K-Akt信号通路、IL-17信号通路、缺氧诱导因子1信号通路等通路,其功能主要为受体配体活性、受体调节活性等。 结论 本研究初步揭示了小青龙汤治疗过敏性鼻炎的多成分、多靶点、多通路的作用机制,为小青龙汤的临床运用和研究提供参考。

关键词: 网络药理学, 分子对接, 过敏性鼻炎, 小青龙汤, 信号通路

Abstract: Objective To analyze the mechanism of action of the Xiaoqinglong decoction in allergic rhinitis treatment based on network pharmacology in order to provide direction and reference for its clinical application and further research. Methods Multiple data platforms were used to analyze the mechanism of action of the Xiaoqinglong decoction in allergic rhinitis. Through the screening of OB and DL values in the TCMSP database, the effective chemical components of the decoction, as well as their action targets, were obtained. The Cytoscape 3.7.1 software was used to draw the network diagram of the decoction's effective component-target and screening the drug's key components. Meanwhile, potential allergic rhinitis targets were obtained using the GenCards and OMIM databases, and the different genes were obtained from the GEO database and were included in the next analysis. Using an online drawing software, a Venn diagram was drawn to extract the intersection targets of the Xiaoqinglong decoction and allergic rhinitis disease targets for further analysis. Protein interaction analysis was then carried out for the intersection targets on the String platform for PPI network construction, which was imported into the Cytoscape3.7.1 software to screen the decoction core targets in allergic rhinitis treatment. The Metascape platform was used to analyze the biological processes and pathways involved in the intersection targets of Xiaoqinglong decoction-allergic rhinitis, and the GO and KEGG analyses data were obtained afterwards. The OriginPro2020 was then used to visualize the results obtained and analyzed using the Cytoscape 3.7.1 software, constructing the “Xiaoqinglong Decoction-allergic rhinitis intersection targets-signal pathway” diagram in the process. Additionally, AutoDock was used for molecular docking verification of these key components and core targets. Results The effective chemical components of the Xiaoqinglong decoction in allergic rhinitis treatment included quercetin, kaempferol, and naringenin, among others. Meanwhile, the identified core targets were STAT3, IL6, and TNF, among others. Moreover, the signaling pathway of the Xiaoqinglong decoction in allergic rhinitis treatment mainly acted on the TNF, MAPK, PI3K-Akt, IL-17, and HIF signaling pathways, wherein the molecular function was mainly found to mediate receptor ligand and receptor regulator activities, among others. Conclusion This study initially revealed the multi-component, multi-targeted, and multi-pathway mechanisms of action the Xiaoqinglong decoction in allergic rhinitis treatment, providing references for the drug's clinical applications.

Key words: Network pharmacology, Molecular docking, Allergic rhinitis, Xiaoqinglong Decoction

中图分类号: 

  • R765.21
[1] 中华耳鼻咽喉头颈外科杂志编委会, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 变应性鼻炎诊断和治疗指南(摘录)[J]. 中国社区医师, 2012, 28(19): 8.
[2] 邵英, 杨永芳, 秦明芳, 等. 云南省18岁及以上人群过敏性疾病的流行现状调查[J]. 现代预防医学, 2020, 47(14): 2501-2504,2520. SHAO Ying, YANG Yongfang, QIN Mingfang, et al. Prevalence and characteristics of anaphylaxis in adults in Yunnan Province[J]. Mod Prev Med, 2020, 47(14): 2501-2504, 2520.
[3] 陈惠芳,刘昊斓,闫亚杰,等. 小青龙汤治疗变应性鼻炎的实验研究的进展[J].中医耳鼻喉科学研究,2020,19(1): 13-16.
[4] 曾丽珍. 小青龙汤治疗慢阻肺急性加重期的临床运用[J]. 世界最新医学信息文摘, 2019,19(26): 219,221. doi:10.19613/j.cnki.1671-3141.2019.26.127.
[5] 卫志颖. 小青龙汤加减治疗儿童肺系疾病验案3则[J]. 江苏中医药, 2019, 51(8): 61-62. doi:10.3969/j.issn.1672-397X.2019.08.021.
[6] 卓超林, 王辉, 李常, 等. 变通小青龙汤治疗支气管哮喘(虚哮证)的临床研究[J]. 中国中医急症, 2019,28(8): 1414-1416. ZHUO Chaolin, WANG Hui, LI Chang, et al. Efficacy of changed xiaoqinglong decoction on deficient-asthma[J]. J Emerg Tradit Chin Med, 2019, 28(8): 1414-1416.
[7] 刘华平. 过敏性鼻炎-哮喘综合征中医证型分布研究初探[J]. 中医药导报, 2011, 17(8): 37-38. doi:10.3969/j.issn.1672-951X.2011.08.019.
[8] 齐玮. 变应性鼻炎发病相关因素及中医临床证型分布调查[J]. 中国医药导报, 2013, 10(31): 125-128. QI Wei. Distribution investigation of related pathogenic factors and TCM clinical syndrome types of allergic rhinitis[J]. China Med Her, 2013, 10(31): 125-128.
[9] Sagit M, Polat H, Gurgen SG, et al. Effectiveness of quercetin in an experimental rat model of allergic rhinitis[J]. Eur Arch Otorhinolaryngol, 2017, 274(8): 3087-3095. doi:10.1007/s00405-017-4602-z.
[10] Edo Y, Otaki A, Asano K. Quercetin enhances the thioredoxin production of nasal epithelial cells in vitro and in vivo[J]. Medicines(Basel), 2018, 5(4): E124. doi:10.3390/medicines5040124.
[11] Lee EJ, Ji GE, Sung MK. Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells[J]. Inflamm Res, 2010, 59(10): 847-854. doi:10.1007/s00011-010-0196-2.
[12] Shin D, Park SH, Choi YJ, et al. Dietary compound kaempferol inhibits airway thickening induced by allergic reaction in a bovine serum albumin-induced model of asthma[J]. Int J Mol Sci, 2015, 16(12): 29980-29995. doi:10.3390/ijms161226218.
[13] Oh HA, Han NR, Kim MJ, et al. Evaluation of the effect of kaempferol in a murine allergic rhinitis model[J]. Eur J Pharmacol, 2013, 718(1/2/3): 48-56. doi:10.1016/j.ejphar.2013.08.045.
[14] Gong JH, Shin D, Han SY, et al. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma[J]. J Nutr, 2012, 142(1): 47-56. doi:10.3945/jn.111.150748.
[15] Abbas MM, Al-Rawi N, Abbas MA, et al. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay[J]. Res Pharm Sci, 2019, 14(6): 566-573. doi: 10.4103/1735-5362.272565.
[16] Wang SS, Ye K, Shu T, et al. Enhancement of galloylation efficacy of stigmasterol and β-sitosterol followed by evaluation of cholesterol-reducing activity[J]. J Agric Food Chem, 2019, 67(11): 3179-3187. doi:10.1021/acs.jafc.8b06983.
[17] Liu R, Hao DL, Xu WY, et al. β-sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice[J]. Pharm Biol, 2019, 57(1): 161-168. doi:10.1080/13880209.2019.1577461.
[18] 彭玉凤, 张扬南, 罗迪贤. EB病毒与鼻咽癌组织AKR1B10蛋白表达相关性分析[J]. 中华肿瘤防治杂志, 2018, 25(19): 1371-1375. doi:10.16073/j.cnki.cjcpt.2018.19.006. PENG Yufeng, ZHANG Yangnan, LUO Dixian. Correlation analysis between EB virus and the expression of AKR1B10 protein in nasopharyngeal carcinoma tissue[J]. Chin J Cancer Prev Treat, 2018, 25(19): 1371-1375. doi:10.16073/j.cnki.cjcpt.2018.19.006.
[19] 孙基丰, 孙婷婷, 李超, 等. 醛糖还原酶AKR1B1与肺癌的相关性研究[J]. 长春理工大学学报(自然科学版), 2018, 41(6): 141-146. doi:10.3969/j.issn.1672-9870.2018.06.031. SUN Jifeng, SUN Tingting, LI Chao, et al. Research on correlation between aldose rceductase AKR1B1 and lung cancer[J]. J Chang Univ Sci Technol Nat Sci Ed, 2018, 41(6): 141-146. doi:10.3969/j.issn.1672-9870.2018.06.031.
[20] 闫占峰, 矫璐璐, 巩政, 等. 鼻内针刺联合益气解敏汤治疗中重度变应性鼻炎肺脾气虚型60例临床观察[J]. 中医杂志, 2018, 59(12): 1035-1038. doi:10.13288/j.11-2166/r.2018.12.011. YAN Zhanfeng, JIAO Lulu, GONG Zheng, et al. Clinical observation on combination of intranasal acupuncture and yiqi Jiemin decoction for the treatment of 60 cases of moderate and severe allergic rhinitis with deficiency of lung-spleen qi[J]. J Tradit Chin Med, 2018, 59(12): 1035-1038. doi:10.13288/j.11-2166/r.2018.12.011.
[21] 巩政, 闫占峰, 刘巧平, 等. 鼻内针刺治疗持续性中重度变应性鼻炎的临床研究[J]. 中国中西医结合杂志, 2020, 40(12): 1458-1463. doi:10.7661/j.cjim.20200730.032. GONG Zheng, YAN Zhanfeng, LIU Qiaoping, et al. Clinical study on patients with persistent moderate and severe allergic rhinitis treated by intranasal acupuncture[J]. Chin J Integr Tradit West Med, 2020, 40(12): 1458-1463. doi:10.7661/j.cjim.20200730.032.
[22] 巩政, 闫占峰, 刘巧平, 等. 鼻内针刺对变应性鼻炎兔神经源性炎性反应的影响[J]. 针刺研究, 2021,46(2): 111-116,122. doi:10.13702/j.1000-0607.200250. GONG Zheng, YAN Zhanfeng, LIU Qiaoping, et al. Effect of intranasal acupuncture on neurogenic inflammation in allergic rhinitis rabbits[J]. Acupunct Res, 2021, 46(2): 111-116,122. doi:10.13702/j.1000-0607.200250.
[23] 边芳子.鼻内针刺对变应性鼻炎患者Eotaxin-CCR3的表达影响及中枢调控机制探究[D]. 北京:北京中医药大学,2020. doi:10.26973/d.cnki.gbjzu.2020.000920.
[24] 刘莉莉. 鼻内针刺治疗变应性鼻炎临床疗效及基于“TRPV1/SP”炎性机制研究[D]. 北京:北京中医药大学,2019.
[25] Sumbayev VV, Nicholas SA, Streatfield CL, et al. Involvement of hypoxia-inducible factor-1 HiF(1alpha)in IgE-mediated primary human basophil responses[J]. Eur J Immunol, 2009, 39(12): 3511-3519. doi:10.1002/eji.200939370.
[26] Niu YL, Wang JQ, Li Z, et al. HIF1α deficiency in dendritic cells attenuates symptoms and inflammatory indicators of allergic rhinitis in a SIRT1-dependent manner[J]. Int Arch Allergy Immunol, 2020, 181(8): 585-593. doi:10.1159/000506862.
[27] Meng XT, Shi YY, Zhang H, et al. The role of Th17 cells and IL-17 in Th2 immune responses of allergic conjunctivitis[J]. J Ophthalmol, 2020, 2020: 6917185. doi:10.1155/2020/6917185.
[28] Liang X, Liu CS, Wei XH, et al. Mahuang Fuzi Xixin decoction ameliorates allergic rhinitis in rats by regulating the gut microbiota and Th17/treg balance[J]. J Immunol Res, 2020, 2020: 6841078. doi:10.1155/2020/6841078.
[29] Jirmo AC, Busse M, Happle C, et al. IL-17 regulates DC migration to the peribronchial LNs and allergen presentation in experimental allergic asthma[J]. Eur J Immunol, 2020, 50(7): 1019-1033. doi:10.1002/eji.201948409.
[30] 杨阳, 王树鹏. 基于NF-κB信号通路探讨麻黄细辛附子汤对变应性鼻炎大鼠NF-κBp65、p-CREB和AQP5表达的影响[J]. 辽宁中医杂志, 2019, 46(12): 2662-2665. doi:10.13192/j.issn.1000-1719.2019.12.057. YANG Yang, WANG Shupeng. Exploring effect of Mahuang Xixin Fuzi decoction on expressions of NF-κBp65, p-CREB and AQP5 in rats with allergic rhinitis based on NF-κB signaling pathway[J]. Liaoning J Tradit Chin Med, 2019, 46(12): 2662-2665. doi:10.13192/j.issn.1000-1719.2019.12.057.
[31] 张敏, 吴聃, 刘黎星, 等. NF-κB在变应性鼻炎发病中的调节作用[J]. 中国临床解剖学杂志, 2019, 37(4): 421-424, 430. doi:10.13418/j.issn.1001-165x.2019.04.012. ZHANG Min, WU Dan, LIU Lixing, et al. Role of NF-κB in pathogenesis of allergic rhinitis[J]. Chin J Clin Anat, 2019, 37(4): 421-424,430. doi:10.13418/j.issn.1001-165x.2019.04.012.
[32] Liu J, Jiang Y, Han M, et al. MicroRNA-345-5p Acts as an anti-inflammatory regulator in experimental allergic rhinitis via the TLR4/NF-κB pathway[J]. Int Immunopharmacol, 2020, 86: 106522. doi:10.1016/j.intimp.2020.106522.
[33] 马兆楠, 王金昌, 马岩, 等. 基于NF-κB信号通路探讨小青龙汤合玉屏风散对变应性鼻炎大鼠TNF-α和TNF-α mRNA表达影响[J]. 辽宁中医药大学学报, 2017,19(4): 18-20. doi:10.13194/j.issn.1673-842x.2017.04.005. MA Zhaonan, WANG Jinchang, MA Yan, et al. Exploring the effect of xiaoqinglong decoction and yupingfeng powder on the content of TNF-α and the expression of TNF-α mRNA in rats with allergic rhinitis based on NF-κB signaling pathway[J]. J Liaoning Univ Tradit Chin Med, 2017, 19(4): 18-20. doi:10.13194/j.issn.1673-842x.2017.04.005.
[34] 张仲林, 钟玲, 凌保东, 等. 玉屏风散调控变应性鼻炎大鼠IL-6、TNF-α活性的实验研究[J]. 中成药, 2014, 36(9): 1804-1808. ZHANG Zhonglin, ZHONG Ling, LING Baodong, et al. Effect of Yupingfeng Powder on activity of IL-6 and TNF-α in rats with allergic rhinitis[J]. Chin Tradit Pat Med, 2014, 36(9): 1804-1808.
[35] 余滋中, 付艳乔, 李国义. 变应性鼻炎患者血清IL-6、IL-17和TNF-α表达水平及意义[J]. 解放军预防医学杂志, 2017, 35(4): 369-370,373. doi:10.13704/j.cnki.jyyx.2017.04.023.
[36] 田亮, 张伟. 白三烯受体拮抗剂对过敏性鼻炎模型大鼠血清IL-6、IL-10及TNF-α表达的影响[J]. 河北医药, 2019, 41(19): 2889-2893. doi: 10.3969/j.issn.1002-7386.2019.19.002. TIAN Liang, ZHANG Wei. Effects of leukotriene receptor antagonists on the expressions of IL-6, IL-10 and TNF-α in serum of rats with allergic rhinitis[J]. Hebei Med J, 2019, 41(19): 2889-2893. doi: 10.3969/j.issn.1002-7386.2019.19.002.
[1] 王露,谢慧,卢美迪,邓新星,李清韵. 基于网络药理学和分子对接探讨“川芎-白芷”药对治疗鼻窦炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 154-164.
[2] 姜雪莲, 张静月, 卫旭东. 基于Meta分析桥接网络药理学的鼻渊通窍颗粒治疗慢性鼻窦炎的疗效评价及潜在机制研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 226-236.
[3] 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259.
[4] 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74.
[5] 王俊鑫孙岩. miRNA-29b参与上皮间质转化相关信号通路调控的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 132-137.
[6] 王宇婷王嘉玺. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104.
[7] 李化静,郝润梅,戴皓,张令,申震,权芳,邵渊. 儿茶素抑制卵清蛋白诱导的过敏性鼻炎小鼠模型炎症反应的机制研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 1-7.
[8] 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128.
[9] 林兴,沈翎,林宗通,杨中婕. 儿童鼻腔异物与过敏性鼻炎关系的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 101-104.
[10] 徐海侠,崔晓波,刘佳荣,李欣,刘佳宜,刘晓玲. 内蒙古呼和浩特城区气传致敏花粉流行情况调查[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 106-109.
[11] 邱昌余,周俊,庄德恩,杨晴,陆美萍,程雷. 人工智能技术在辅助耳鼻咽喉科医师了解过敏性鼻炎患者需求中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 88-94.
[12] 李宏梅,王兰,高照慧,王莹,薛金梅. p-ERK2及ERK2在鼻息肉组织的表达及其意义[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 42-46.
[13] 王慧,温晏,闫丽,于晓明,宁宏. TGF-β1对HLEC发生EMT影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 76-79.
[14] 王晶,王雪松,薛金梅. 纤毛长度信号通路调节机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 98-101.
[15] 陈芳,李晓艳. T-bet、TGF-β在过敏性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .