山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (2): 143-150.doi: 10.6040/j.issn.1673-3770.0.2022.016

• 综述 • 上一篇    

免疫疫苗在头颈部鳞状细胞癌中的研究进展

艾自琴1,2,李军政1,2,3   

  1. 1.贵州医科大学临床医学院, 贵州 贵阳 550004;
    2.暨南大学附属广州红十字会医院 耳鼻咽喉头颈外科, 广东 广州 510220;
    3.南方医科大学珠江医院 耳鼻咽喉头颈外科, 广东 广州 510280
  • 发布日期:2023-03-30
  • 通讯作者: 李军政. E-mail:jzli2002@163.com
  • 基金资助:
    广州市科技计划项目(202102010041)

Advances in immune vaccines for head and neck squamous cell carcinoma

AI Ziqin1,2, LI Junzheng1,2,3   

  1. 1. Clinical Medical College of Guizhou Medical University, Guiyang 550004, Guizhou, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510220, Guangdong, China;
    3. Department of Otorhinolaryngology & Head and Neck Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China
  • Published:2023-03-30

摘要: 头颈部鳞状细胞癌系头颈部肿瘤中最常见的病理类型,其发病率逐年上升,发现时多属中晚期,预后差,死亡率高。随着研究的深入,头颈鳞癌的治疗机制愈加清晰,治疗方式呈现多元化。免疫疫苗作为一种新兴的免疫治疗方式,因其独特的优势,正逐步成为头颈部鳞状细胞癌治疗的热点之一。其可分为预防性疫苗和治疗性疫苗,两者分别以不同的机制在头颈鳞癌的治疗中发挥疗效。相较其他免疫治疗方法,免疫疫苗可以更精准治疗头颈肿瘤且不良反应更轻微。随着免疫疫苗向个体化定制方向发展,其有望成为抗癌免疫治疗的强大工具。回顾头颈部鳞状细胞癌研究中关于免疫疫苗的进展,同时对其前景进行了展望。

关键词: 头颈部鳞状细胞癌, 免疫治疗, 免疫疫苗, 预防性疫苗, 治疗性疫苗

Abstract: Head and neck squamous cell carcinoma is the most common pathological type of the head and neck tumor, and its incidence is increasing annually. Most cases are discovered only in the middle and late stages, when prognosis is poor and mortality rate is high. With increasing research, the treatment mechanism is becoming clearer and the available therapies are more diverse. Immune vaccines, as an emerging immunotherapy modality, are gradually becoming one of the hot topics in the treatment of head and neck squamous cell carcinoma because of their unique advantages. It is divided into preventive vaccine and therapeutic vaccine, which are effective on the treatment of head and neck squamous cell carcinoma by different mechanisms. Compared with other immunotherapy methods, immune vaccine can treat more accurately with mild side effects. As the immune vaccine moves toward individualized customization, it is expected to become a powerful tool for anticancer immunotherapy. We reviewed and summarized the progress of immune vaccines in head and neck squamous cell carcinoma research, and discussed its future development prospects.

Key words: Head and neck squamous cell carcinoma, Immunotherapy, Immune vaccine, Preventive vaccine, Therapeutic vaccine

中图分类号: 

  • R739.91
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
[2] Fitzmaurice C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 2006 to 2016: a systematic analysis for the Global Burden of Disease study[J]. J Clin Oncol, 2018, 36(15_suppl): 1568. doi:10.1200/jco.2018.36.15_suppl.1568
[3] Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis[J]. Oncologist, 2010, 15(9): 994-1001. doi:10.1634/theoncologist.2009-0289
[4] Cohen N, Fedewa S, Chen AY. Epidemiology and demographics of the head and neck cancer population[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(4): 381-395. doi:10.1016/j.coms.2018.06.001
[5] Liu WL, Qdaisat A, Zhou SH, et al. Hypomagnesemia and incidence of osteoradionecrosis in patients with head and neck cancers[J]. Head Neck, 2021, 43(2): 613-621. doi:10.1002/hed.26510
[6] Gau M, Karabajakian A, Reverdy T, et al. Induction chemotherapy in head and neck cancers: results and controversies[J]. Oral Oncol, 2019, 95: 164-169. doi:10.1016/j.oraloncology.2019.06.015
[7] Baudelet M, van den Steen L, Tomassen P, et al. Very late xerostomia, dysphagia, and neck fibrosis after head and neck radiotherapy[J]. Head Neck, 2019, 41(10): 3594-3603. doi:10.1002/hed.25880
[8] Coley WB. Ⅱ. contribution to the knowledge of sarcoma[J]. Ann Surg, 1891, 14(3): 199-220. doi:10.1097/00000658-189112000-00015
[9] Thompson JA, Schneider BJ, Brahmer J, et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18(3): 230-241. doi:10.6004/jnccn.2020.0012
[10] Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1): 47-62. doi:10.1038/nrclinonc.2017.148
[11] Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. doi:10.3322/caac.21596
[12] Gavrielatou N, Doumas S, Economopoulou P, et al. Biomarkers for immunotherapy response in head and neck cancer[J]. Cancer Treat Rev, 2020, 84: 101977. doi:10.1016/j.ctrv.2020.101977
[13] O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3): 151-167. doi:10.1038/s41571-018-0142-8
[14] Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer[J]. Nat Rev Cancer, 2018, 18(5): 269-282. doi:10.1038/nrc.2018.11
[15] Pauken KE, Lagattuta KA, Lu BY, et al. TCR-sequencing in cancer and autoimmunity: barcodes and beyond[J]. Trends Immunol, 2022, 43(3): 180-194. doi:10.1016/j.it.2022.01.002
[16] Zhu YT, Liu JY. The role of neoantigens in cancer immunotherapy[J]. Front Oncol, 2021, 11: 682325. doi:10.3389/fonc.2021.682325
[17] Chen YP, Wang YQ, Lv JW, et al. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy[J]. Ann Oncol, 2019, 30(1): 68-75. doi:10.1093/annonc/mdy470
[18] Seliger B, Massa C, Yang B, et al. Immune escape mechanisms and their clinical relevance in head and neck squamous cell carcinoma[J]. Int J Mol Sci, 2020, 21(19): 7032. doi:10.3390/ijms21197032
[19] Lee MY, Allen CT. Mechanisms of resistance to T cell-based immunotherapy in head and neck cancer[J]. Head Neck, 2020, 42(9): 2722-2733. doi:10.1002/hed.26158
[20] Zhang XH, Shi MQ, Chen TL, et al. Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy[J]. Mol Ther Nucleic Acids, 2020, 22: 298-309. doi:10.1016/j.omtn.2020.08.030
[21] Yao Y, Chen CL, Yu D, et al. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy[J]. Allergy, 2021, 76(2): 456-470. doi:10.1111/all.14639
[22] Brooks JM, Menezes AN, Ibrahim M, et al. Development and validation of a combined hypoxia and immune prognostic classifier for head and neck cancer[J]. Clin Cancer Res, 2019, 25(17): 5315-5328. doi:10.1158/1078-0432.CCR-18-3314
[23] Takahashi H, Sakakura K, Ida S, et al. Circulating naïve and effector memory T cells correlate with prognosis in head and neck squamous cell carcinoma[J]. Cancer Sci, 2022, 113(1): 53-64. doi:10.1111/cas.15195
[24] Albers AE, Qian X, Kaufmann AM, et al. Phenotype of p53 wild-type epitope-specific T cells in the circulation of patients with head and neck cancer[J]. Sci Rep, 2018, 8(1): 10716. doi:10.1038/s41598-018-29067-5
[25] Igarashi Y, Sasada T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy[J]. J Immunol Res, 2020: 5825401. doi:10.1155/2020/5825401
[26] Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments[J]. Nat Rev Immunol, 2021, 21(2): 83-100. doi:10.1038/s41577-020-00479-7
[27] Garbuglia AR, Lapa D, Sias C, et al. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease[J]. Front Immunol, 2020, 11: 188. doi:10.3389/fimmu.2020.00188
[28] Nguyen MH, Wong G, Gane E, et al. Hepatitis B virus: advances in prevention, diagnosis, and therapy[J]. Clin Microbiol Rev, 2020, 33(2): e00046-e00019. doi:10.1128/CMR.00046-19
[29] Diana G, Corica C. Human Papilloma Virus vaccine and prevention of head and neck cancer, what is the current evidence? [J]. Oral Oncol, 2021, 115: 105168. doi:10.1016/j.oraloncology.2020.105168
[30] Roman BR, Aragones A. Epidemiology and incidence of HPV-related cancers of the head and neck[J]. J Surg Oncol, 2021, 124(6): 920-922. doi:10.1002/jso.26687
[31] Giuliano AR, Wilkin T, Bautista OM, et al. Design of a phase III efficacy, immunogenicity, and safety study of 9-valent human papillomavirus vaccine in prevention of oral persistent infection in men[J]. Contemp Clin Trials, 2022, 115: 106592. doi:10.1016/j.cct.2021.106592
[32] Morse MA, Gwin WR 3rd, Mitchell DA. Vaccine therapies for cancer: then and now[J]. Target Oncol, 2021, 16(2): 121-152. doi:10.1007/s11523-020-00788-w
[33] Stern PL. Key steps in vaccine development[J]. Ann Allergy Asthma Immunol, 2020, 125(1): 17-27. doi:10.1016/j.anai.2020.01.025
[34] Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines[J]. Nat Rev Cancer, 2021, 21(6): 360-378. doi:10.1038/s41568-021-00346-0
[35] Tran T, Blanc C, Granier C, et al. Therapeutic cancer vaccine: building the future from lessons of the past[J]. Semin Immunopathol, 2019, 41(1): 69-85. doi:10.1007/s00281-018-0691-z
[36] Julian R, Savani M, Bauman JE. Immunotherapy approaches in HPV-associated head and neck cancer[J]. Cancers, 2021, 13(23): 5889. doi:10.3390/cancers13235889
[37] Lechner M, Liu J, Masterson L, et al. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management[J]. Nat Rev Clin Oncol, 2022, 19(5): 306-327. doi:10.1038/s41571-022-00603-7
[38] Wang RJ, Pan W, Jin L, et al. Human papillomavirus vaccine against cervical cancer: opportunity and challenge[J]. Cancer Lett, 2020, 471: 88-102. doi:10.1016/j.canlet.2019.11.039
[39] Shibata H, Zhou LY, Xu N, et al. Personalized cancer vaccination in head and neck cancer[J]. Cancer Sci, 2021, 112(3): 978-988. doi:10.1111/cas.14784
[40] Stephens AJ, Burgess-Brown NA, Jiang SS. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines[J]. Front Immunol, 2021, 12: 696791. doi:10.3389/fimmu.2021.696791
[41] Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future[J]. Mol Cell Proteomics, 2021, 20: 100022. doi:10.1074/mcp.R120.002309
[42] Gaglione R, Pane K, Dell'Olmo E, et al. Cost-effective production of recombinant peptides in Escherichia coli[J]. N Biotechnol, 2019, 51: 39-48. doi:10.1016/j.nbt.2019.02.004
[43] Li M, Josephs RD, Daireaux A, et al. Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography-high-resolution mass spectrometry[J]. Anal Bioanal Chem, 2021, 413(7): 1861-1870. doi:10.1007/s00216-021-03154-5.
[44] Li WY, Separovic F, O'brien-Simpson NM, et al. Chemically modified and conjugated antimicrobial peptides against superbugs[J]. Chem Soc Rev, 2021, 50(8): 4932-4973. doi:10.1039/d0cs01026j.
[45] Wanning S, Süverkrüp R, Lamprecht A. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders[J]. Int J Pharm, 2020, 586: 119564. doi:10.1016/j.ijpharm.2020.119564.
[46] Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215. doi:10.1080/14760584.2018.1434000.
[47] Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too[J]. Cancer Immunol Immunother, 2018, 67(12): 1911-1918. doi:10.1007/s00262-018-2158-4.
[48] Chen XT, Yang J, Wang LF, et al. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives[J]. Theranostics, 2020, 10(13): 6011-6023. doi:10.7150/thno.38742.
[49] Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229. doi:10.1038/s41571-020-00460-2.
[50] Fries CN, Curvino EJ, Chen JL, et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health[J]. Nat Nanotechnol, 2021, 16(4): 1-14. doi:10.1038/s41565-020-0739-9.
[51] Isidro-Llobet A, Kenworthy MN, Mukherjee S, et al. Sustainability challenges in peptide synthesis and purification: from R&D to production[J]. J Org Chem, 2019, 84(8): 4615-4628. doi:10.1021/acs.joc.8b03001.
[52] Yoshitake Y, Fukuma D, Yuno A, et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS[J]. Clin Cancer Res, 2015, 21(2): 312-321. doi:10.1158/1078-0432.CCR-14-0202.
[53] Yang MC, Yang A, Qiu J, et al. Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant[J]. Cell Biosci, 2016, 6: 17. doi:10.1186/s13578-016-0083-9.
[54] Ogasawara M, Miyashita M, Yamagishi Y, et al. Phase Ⅰ/Ⅱ pilot study of wilms' tumor 1 peptide-pulsed dendritic cell vaccination combined with conventional chemotherapy in patients with head and neck cancer[J]. Ther Apher Dial, 2019, 23(3): 279-288. doi:10.1111/1744-9987.12831.
[55] Hobernik D, Bros M. DNA vaccines-how far from clinical use? [J]. Int J Mol Sci, 2018, 19(11): 3605. doi:10.3390/ijms19113605.
[56] Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: from initial findings to prospects[J]. Immunol Lett, 2018, 196: 11-21. doi:10.1016/j.imlet.2018.01.011.
[57] Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies[J]. Vaccines, 2019, 7(2): 37. doi:10.3390/vaccines7020037.
[58] Wen R, Umeano AC, Kou Y, et al. Nanoparticle systems for cancer vaccine[J]. Nanomedicine(Lond), 2019, 14(5): 627-648. doi:10.2217/nnm-2018-0147.
[59] Chai SJ, Fong SCY, Gan CP, et al. In vitro evaluation of dual-antigenic PV1 peptide vaccine in head and neck cancer patients[J]. Hum Vaccin Immunother, 2019, 15(1): 167-178. doi:10.1080/21645515.2018.1520584.
[60] Whiteside TL. Anti-tumor vaccines in head and neck cancer: targeting immune responses to the tumor[J]. Curr Cancer Drug Targets, 2007, 7(7): 633-642. doi:10.2174/156800907782418310.
[1] 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74.
[2] 李孟辉,郅莉莉,戚凯文,王珊珊,高倩,步美玲,姜荷云,冯绛楠,王金荣. 皮下免疫治疗对单一尘螨和合并霉菌过敏儿童哮喘的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 75-80.
[3] 于克娜,孙凯月,张杰,金鹏. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124.
[4] 张贵阳,黄河,冼志,张汉文,谢桂彩. 粉尘螨滴剂舌下含服免疫治疗对不同年龄段变应性鼻炎患者的临床效果评估[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 60-65.
[5] 关凯,王良录. 从花粉症看过敏性疾病的整体诊疗策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 13-19.
[6] 邱前辉,高俊潇. 特异性免疫治疗对过敏性鼻炎和哮喘的同步控制和远期疗效[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 33-37.
[7] 曹成,许昱. 变应性鼻炎患者舌下免疫治疗的临床依从性192例分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 114-118.
[8] 王坛,武珂,李连庆,宫丽丽. 皮下免疫治疗注射后出现全身不良反应的伴发因素及处理[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 71-74.
[9] 吴静,刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102.
[10] 陈鸣,俞雪飞. 浅谈伴有变应性鼻炎的慢性鼻窦炎的治疗[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 18-22.
[11] 覃纲,梁灼萍. 变应性真菌性鼻-鼻窦炎免疫治疗现状[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 23-26.
[12] 吴湘萍. 患者管理方式对变应性鼻炎舌下含服粉尘螨滴剂疗效的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 68-72.
[13] 朱新华. 变应性鼻炎冲击免疫治疗的临床应用[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 13-17.
[14] 程雷. 特异性免疫治疗是变应性鼻炎的一线疗法[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 1-2.
[15] 李勇. 变应性鼻炎免疫治疗共识及相关进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!