山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (5): 112-118.doi: 10.6040/j.issn.1673-3770.0.2023.448
• 综述 • 上一篇
李钰,刘皓,王敏,付小龙,李文
LI Yu, LIU Hao, WANG Min, FU Xiaolong, LI Wen
摘要: 耳聋一直是临床上的治疗难题,随着社会老龄化不断加重,耳聋患者的数量逐年递增,耳聋严重影响患者的生活质量并加重了社会负担。找到关键的干预靶点,对于耳聋的预防和治疗意义重大。mTOR位于细胞生长、代谢、增殖和存活等过程的中心位置。近来,mTOR通路在耳蜗中的作用受到了广泛关注。最新的研究表明,mTOR通路在内耳毛细胞和螺旋神经元的增殖分化、功能维持、衰老及存活中均发挥着重要作用,而内耳毛细胞和螺旋神经元是听觉形成中的关键环节,因此,mTOR信号有希望成为耳聋新的治疗靶点。论文对mTOR通路在耳蜗中的研究现状进行梳理,总结mTOR通路在耳蜗中的调控机制,并探讨该领域未来仍需解决的问题及可能的研究方向。
中图分类号:
[1] Cortada M, Levano S, Bodmer D. mTOR signaling in the inner ear as potential target to treat hearing loss[J]. Int J Mol Sci, 2021, 22(12): 6368. doi:10.3390/ijms22126368 [2] Nadol JB Jr. Comparative anatomy of the cochlea and auditory nerve in mammals[J]. Hear Res, 1988,34(3):253-266. doi: 10.1016/0378-5955(88)90006-8 [3] ZHANG Wei, WANG Hongfang, XU Baohua. Overview of the main molecular mechanisms of biological aging[J]. Current Biotechnology, 2023, 13(2): 228-233. doi:10.19586/j.2095-2341.2022.0170 [4] Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976. doi:10.1016/j.cell.2017.02.004 [5] WANG Zhen, YANG Luo, LIAO Min, et al. Research progress of mTOR pathway in pathogenesis of diabetic nephropathy[J]. Current Biotechnology, 2021, 11(3): 316-321. doi:10.19586/j.2095-2341.2020.0157 [6] Wei J J, Liu S W, Duan R X, et al. Research progress of mTOR in diabetic vascular disease [J]. Chinese Journal of Medical Molecular Biology,202,19(5):421-425.(in Chinese)doi:10.3870/j.issn.1672-8009.2022.05.012 [7] Murugan AK. mTOR: role in cancer, metastasis and drug resistance[J]. Semin Cancer Biol, 2019, 59: 92-111. doi:10.1016/j.semcancer.2019.07.003 [8] Tuo YL, Xiang M. mTOR: a double-edged sword for diabetes[J]. J Leukoc Biol, 2019, 106(2): 385-395. doi:10.1002/JLB.3MR0317-095RR [9] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. doi:10.1016/j.cell.2012.03.017 [10] YAO Ruiyuan, WEI Hongyuan, LEI Jinye, et al. Progress on the role of mTOR signaling pathway in the pathogenesis and regulatory mechanisms[J]. Chinese Bulletin of Life Sciences, 2019, 31(2): 135-142. doi:10.13376/j.cbls/2019020 [11] SU Jie, YANG Fuyu, LI Meng, et al. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. doi:10.6040/j.issn.1673-3770.0.2021.125 [12] LANG Zhengrong, CHENG Gui, ZHANG Tao. Research progress on the relationship between cisplatin ototoxicity and autophagy[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(2): 189-192. doi:10.13201/j.issn.1001-1781.2020.02.023 [13] Chen Y, Yu L. Autophagic lysosome reformation[J]. Exp Cell Res, 2013, 319(2): 142-146. doi:10.1016/j.yexcr.2012.09.004 [14] Li W, Li Y, Guan Y, et al. TNFAIP8L2/TIPE2 impairs autolysosome reformation via modulating the RAC1-MTORC1 axis[J]. Autophagy, 2021,17(6):1410-1425. doi: 10.1080/15548627.2020.1761748 [15] Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity[J]. J Autoimmun, 2020, 110: 102373. doi:10.1016/j.jaut.2019.102373 [16] Jiang H, Sha SH, Schacht J. Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo[J]. J Neurochem, 2006, 99(1): 269-276. doi:10.1111/j.1471-4159.2006.04117.x [17] Tisi A, Ramekers D, Flati V, et al. mTOR signaling in BDNF-treated guinea pigs after ototoxic deafening[J]. Biomedicines, 2022, 10(11): 2935. doi:10.3390/biomedicines10112935 [18] García-Mato á, Cervantes B, Rodríguez-de la Rosa L, et al. IGF-1 controls metabolic homeostasis and survival in HEI-OC1 auditory cells through AKT and mTOR signaling[J]. Antioxidants(Basel), 2023, 12(2): 233. doi:10.3390/antiox12020233 [19] Cortada M, Levano S, Hall MN, et al. mTORC2 regulates auditory hair cell structure and function[J]. iScience, 2023, 26(9): 107687. doi:10.1016/j.isci.2023.107687 [20] Kim HJ, Woo HM, Ryu J, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development[J]. PLoS One, 2013, 8(2): e55609. doi:10.1371/journal.pone.0055609 [21] Leitmeyer K, Glutz A, Radojevic V, et al. Inhibition of mTOR by rapamycin results in auditory hair cell damage and decreased spiral ganglion neuron outgrowth and neurite formation in vitro[J]. Biomed Res Int, 2015, 2015: 925890. doi:10.1155/2015/925890 [22] Shu YL, Li WY, Huang MQ, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells[J]. Nat Commun, 2019, 10: 5530. doi:10.1038/s41467-019-13157-7 [23] Li XJ, Doetzlhofer A. LIN28B/let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling[J]. Proc Natl Acad Sci USA, 2020, 117(36): 22225-22236. doi:10.1073/pnas.2000417117 [24] Zhang Z, Gao S, Hu YN, et al. Ti3 C2 tx MXene composite 3D hydrogel potentiates mTOR signaling to promote the generation of functional hair cells in cochlea organoids[J]. Adv Sci(Weinh), 2022, 9(32): e2203557. doi:10.1002/advs.202203557 [25] Ye B, Wang Q, Hu H, et al. Restoring autophagic flux attenuates cochlear spiral ganglion neuron degeneration by promoting TFEB nuclear translocation via inhibiting MTOR[J]. Autophagy, 2019,15(6):998-1016.doi: 10.1080/15548627.2019.1569926 [26] Xiong W, Wei W, Qi Y, et al. Autophagy is required for remodeling in postnatal developing ribbon synapses of cochlear inner hair cells[J]. Neuroscience, 2020, 431: 1-16. doi:10.1016/j.neuroscience.2020.01.032 [27] Gao L, Kita T, Katsuno T, et al. Insulin-like growth factor 1 on the maintenance of ribbon synapses in mouse cochlear explant cultures[J]. Front Cell Neurosci, 2020, 14: 571155. doi:10.3389/fncel.2020.571155 [28] Varela-Nieto I, Murillo-Cuesta S, Calvino M, et al. Drug development for noise-induced hearing loss[J]. Expert Opin Drug Discov, 2020, 15(12): 1457-1471. doi:10.1080/17460441.2020.1806232 [29] YANG Kun, CHEN Lijuan, HE Xiaodan, et al. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195 [30] HE Jingchun, RUAN Qingwei, HAN Miaomiao, et al. Establishment of sensorineural deafness model in C57 mice by cisplatin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2014, 28(1): 1-5.doi: 10.6040/j.issn.1673-3770.0.2013.237 [31] Bodmer D, Levano-Huaman S. Sesn2/AMPK/mTOR signaling mediates balance between survival and apoptosis in sensory hair cells under stress[J]. Cell Death Dis, 2017, 8(10): e3068. doi:10.1038/cddis.2017.457 [32] Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125(1): 25-32. doi:10.1172/jci73939 [33] ZHOU Jiamin, SONG Yuwan, SUN Yan. Research progress of pyroptosis in senile degenerative diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 172-180. doi:10.6040/j.issn.1673-3770.0.2022.090 [34] GAO Xianting, LU Ling. Advances in the analysis and prevention of presbycusis[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2018, 42(3): 174-178. doi:10.3760/cma.j.issn.1673-4106.2018.03.011 [35] Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice[J]. Nature, 2009, 460: 392-395. doi:10.1038/nature08221 [36] Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease[J]. Nature, 2013, 493: 338-345. doi:10.1038/nature11861 [37] Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5): 802-812. doi:10.1016/j.cell.2010.10.002 [38] Altschuler RA, Kabara L, Martin C, et al. Rapamycin added to diet in late mid-life delays age-related hearing loss in UMHET4 mice[J]. Front Cell Neurosci, 2021, 15: 658972. doi:10.3389/fncel.2021.658972 [39] Guo L, Cao W, Niu Y, et al. Autophagy regulates the survival of hair cells and spiral ganglion neurons in cases of noise, ototoxic drug, and age-induced sensorineural hearing loss[J]. Front Cell Neurosci, 2021, 15: 760422. doi:10.3389/fncel.2021.760422 [40] Fu X, Sun X, Zhang L, et al. Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss[J]. J Clin Invest, 2018, 128(11): 4938-4955. doi:10.1172/jci98058 [41] Zhang Y, Lv Z, Liu Y, et al. PIN1 protects hair cells and auditory HEI-OC1 cells against senescence by inhibiting the PI3K/akt/mTOR pathway[J]. Oxid Med Cell Longev, 2021, 2021: 9980444. doi:10.1155/2021/9980444 [42] Liu H, Li F, Li X, et al. Rapamycin ameliorates age-related hearing loss in C57BL/6J mice by enhancing autophagy in the SGNs[J]. Neurosci Lett, 2022, 772: 136493. doi:10.1016/j.neulet.2022.136493 |
[1] | 周静,毕秀丽,肖雨,胡俊,付小龙,于亚峰. 盐酸氯米帕明保护听觉毛细胞免受新霉素诱导的损伤[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 22-27. |
[2] | 李为,赵毅,葛玥铭,付洪涛,王进东,张晓龙,董洁,程钰翔. 新生儿常见耳聋基因突变热点及对听力的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 1-8. |
[3] | 黄艳利,李军政. 铜诱导肿瘤细胞死亡机制及其在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 198-205. |
[4] | 许海艳,曹卫,范大川. 多元复合声治疗对突聋患者耳鸣的疗效分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 38-45. |
[5] | 周加敏,宋玉婉,孙岩. 细胞焦亡在老年退行性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 172-180. |
[6] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
[7] | 杨琨, 陈利娟, 何小丹, 刘志奇, 沙素华. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11. |
[8] | 张艳红, 李娟娟, 曾宪海, 缑灵山, 王朝霞, 魏建芳, 马芳, 邱书奇. 耳聋基因panel在耳聋基因诊断中的临床应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 27-34. |
[9] | 石安妮,张佳佳,白鹏,张重阳. 浅析“颈部七线法”针刺治疗突发性耳聋的内涵[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 103-107. |
[10] | 李祯,崔丽梅,孙岩. 骨形态发生蛋白4在内耳发育及在毛细胞与螺旋神经节细胞再生中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 108-112. |
[11] | 钟丽萍,官希龙,王晶晶,汤勇. 鼓室与全身应用激素治疗突发性耳聋的系统评价与Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 1-10. |
[12] | 林育珊,卢标清. 从心脾论治突发性耳聋的疗效观察[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 6-11. |
[13] | 梁敏,吴悔,陈建勇,张勤,李姝娜,郑贵亮,何景春,陈向平,杨军. 前庭诱发肌源性电位预测突聋患者疗效的临床价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 27-32. |
[14] | 吴悔,梁敏,陈建勇,张勤,李姝娜,郑贵亮,何景春,陈向平,杨军. 全聋型突发性耳聋患者的预后与前庭症状及前庭功能关系的回顾性分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 33-38. |
[15] | 徐丽娜,高艳慧,何双八. 南京地区耳聋患者常见耳聋基因突变的分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 45-48. |
|