山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 1-10.doi: 10.6040/j.issn.1673-3770.0.2024.509
• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 •
柯冰冰1,陈铭1,王洪阳2,李春燕1,殷善开1
KE Bingbing1, CHEN Ming1, WANG Hongyang2, LI Chunyan1, YIN Shankai1
摘要: 目的 探讨钙/钙调蛋白依赖性蛋白激酶4(calcium/calmodulin-dependent protein kinase IV, CAMK4)在胆红素介导的听觉中枢神经毒性中的作用。 方法 通过分子对接和微量热泳动技术(microscale thermophoresis, MST)评估CAMK4与胆红素的结合能力。采用石蜡切片免疫荧光染色法检测CAMK4在耳蜗核中的表达。在体外培养的耳蜗核原代神经元中,分别给予胆红素(25 μmol/L)或胆红素联合CAMK4抑制剂KN-93(1 μmol/L)处理,随后评估神经元的ROS水平、线粒体膜电位变化,进行Annexin V/PI染色及活/死细胞染色。 结果 分子对接分析显示,胆红素与CAMK4的结合能为-9.71 kcal/mol, MST检测得到平衡解离常数值为(1.294 4±1.080 3)μmol/L,提示二者具有较强的结合潜力。在耳蜗核中,CAMK4主要表达于神经元。体外实验结果表明,CAMK4抑制剂KN-93能够显著抑制高浓度胆红素诱导的耳蜗核神经元ROS蓄积、线粒体膜电位下降,以及细胞晚期凋亡和存活率下降。 结论 CAMK4在胆红素介导的听觉中枢氧化应激损伤中发挥重要作用。
中图分类号:
| [1] World Health Organization. World report on hearing [M]. Geneva: World Health Organization, 2021 [2] Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: mechanisms and management approaches[J]. N Engl J Med, 2013, 369(21): 2021-2030. doi:10.1056/nejmra1308124 [3] Qian S, Kumar P, Testai FD. Bilirubin encephalopathy[J]. Curr Neurol Neurosci Rep, 2022, 22(7): 343-353. doi:10.1007/s11910-022-01204-8 [4] Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn[J]. Physiol Rev, 2020, 100(3): 1291-1346. doi:10.1152/physrev.00004.2019 [5] Lai K, Song XL, Shi HS, et al. Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice[J]. Sci Transl Med, 2020, 12(530): eaax1337. doi:10.1126/scitranslmed.aax1337 [6] Shi HS, Lai K, Yin XL, et al. Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity[J]. Cell Death Dis, 2019, 10(10): 774. doi:10.1038/s41419-019-1979-1 [7] Gong LN, Liu HW, Lai K, et al. Selective vulnerability of GABAergic inhibitory interneurons to bilirubin neurotoxicity in the neonatal brain[J]. J Neurosci, 2024, 44(45): e0442242024. doi:10.1523/jneurosci.0442-24.2024 [8] 张玲,叶海波,时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044 ZHANG Ling, YE Haibo, SHI Haibo. A new mechanism of bilirubin-induced auditory nervous system injury[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044 [9] Liu HW, Gong LN, Lai K, et al. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage[J]. Neuron, 2023, 111(10): 1609-1625.e6. doi:10.1016/j.neuron.2023.02.022 [10] Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation[J]. Pediatr Res, 1996, 39(6): 1072-1077. doi:10.1203/00006450-199606000-00023 [11] Mao L, Lu J, Yang Q, et al. Bilirubin Targeting WNK1 to Alleviate NLRP3-Mediated Neuroinflammation[J]. Adv Sci(Weinh), 2025. doi:10.1002/advs.202407349. [12] Wu H, Suo GH, Li TC, et al. CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism[J]. Cell Death Discov, 2022, 8(1): 482. doi:10.1038/s41420-022-01270-4 [13] Tang QY, Chen SX, Wu H, et al. Congenital hypothyroidism impairs spine growth of dentate granule cells by downregulation of CaMKIV[J]. Cell Death Discov, 2021, 7(1): 143. doi:10.1038/s41420-021-00530-z. [14] Li ZZ, Lu JY, Zeng G, et al. miR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV(CAMK4)[J]. Cell Death Dis, 2019, 10: 789. doi:10.1038/s41419-019-1923-4 [15] Zhang XH, Griepentrog JE, Zou BB, et al. CaMKIV regulates mitochondrial dynamics during sepsis[J]. Cell Calcium, 2020, 92: 102286. doi:10.1016/j.ceca.2020.102286 [16] Saaciak K, Koszaka A,(·overZ)mudzka E, et al. The calcium/calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders[J]. Int J Mol Sci, 2021, 22(9): 4307. doi:10.3390/ijms22094307 [17] Yin Y, Gao D, Wang Y, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling[J]. Proc Natl Acad Sci U S A, 2016, 113(26): E3773-E3781. doi: 10.1073/pnas.1604519113 [18] Park D, Na M, Kim JA, et al. Activation of CaMKIV by soluble amyloid-β1-42 impedes trafficking of axonal vesicles and impairs activity-dependent synaptogenesis[J]. Sci Signal, 2017, 10(487): eaam8661. doi:10.1126/scisignal.aam8661 [19] Brito MA, Rosa AI, Falcão AS, et al. Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells[J]. Neurobiol Dis, 2008, 29(1): 30-40. doi:10.1016/j.nbd.2007.07.023 [20] Rodrigues CMP, Solá S, Brito MA, et al. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria[J]. J Hepatol, 2002, 36(3): 335-341. doi:10.1016/s0168-8278(01)00279-3 [21] Bianco A, Dvorák A, Capková N, et al. The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect[J]. Int J Mol Sci, 2020, 21(21): 8101. doi:10.3390/ijms21218101 [22] Vasavda C, Kothari R, Malla AP, et al. Bilirubin links heme metabolism to neuroprotection by scavenging superoxide[J]. Cell Chem Biol, 2019, 26(10): 1450-1460.e7. doi:10.1016/j.chembiol.2019.07.006 [23] Meixiong J, Vasavda C, Green D, et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch[J]. eLife, 2019, 8: e44116. doi:10.7554/elife.44116 [24] Gordon DM, Hong SH, Kipp ZA, et al. Identification of binding regions of bilirubin in the ligand-binding pocket of the peroxisome proliferator-activated receptor-A(PPARalpha)[J]. Molecules, 2021, 26(10): 2975. doi:10.3390/molecules26102975 [25] Koga T, Otomo K, Mizui M, et al. Calcium/calmodulin-dependent kinase IV facilitates the recruitment of interleukin-17-producing cells to target organs through the CCR6/CCL20 axis in Th17 cell-driven inflammatory diseases[J]. Arthritis Rheumatol, 2016, 68(8): 1981-1988. doi:10.1002/art.39665 [26] Koga T, Sato T, Furukawa K, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(5): 766-772. doi:10.1002/art.40785 [27] Pezhouman A, Singh N, Song Z, et al. Molecular basis of hypokalemia-induced ventricular fibrillation[J]. Circulation, 2015, 132(16): 1528-1537. doi:10.1161/CIRCULATIONAHA.115.016217 [28] Santulli G, Cipolletta E, Sorriento D, et al. CaMK4 gene deletion induces hypertension[J]. J Am Heart Assoc, 2012, 1(4): e001081. doi: 10.1161/JAHA.112.001081 [29] Wong MH, Samal AB, Lee MK, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II(CaMKII)activity by binding to Ca2+/CaM[J]. J Mol Biol, 2019, 431(7): 1440-1459. doi:10.1016/j.jmb.2019.02.001 [30] Lin ZD, Xu GY, Lu X, et al. Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca2+/CaMKII/Drp1 axis[J]. Aging Cell, 2024: e14440. doi:10.1111/acel.14440 [31] Lu S, Liao ZD, Lu XY, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes[J]. Circ Res, 2020, 126(10): 80-96. doi:10.1161/CIRCRESAHA.119.316288 [32] Zhao YL, James NA, Beshay AR, et al. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress[J]. Cardiovasc Res, 2021, 117(8): 1891-1907. doi:10.1093/cvr/cvaa238 [33] Ni YJ, Deng J, Bai HY, et al. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways[J]. J Cell Mol Med, 2022, 26(2): 312-325. doi:10.1111/jcmm.17081 [34] Dai XM, Meng JS, Deng SK, et al. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel[J]. Theranostics, 2020, 10(7): 3049-3063. doi:10.7150/thno.42385 [35] Fu LY, Zhang Y, Farokhzad RA, et al. ‘Passive’ nanoparticles for organ-selective systemic delivery: design, mechanism and perspective[J]. Chem Soc Rev, 2023, 52(21): 7579-7601. doi:10.1039/d2cs00998f [36] Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. doi:10.1038/s41573-020-0090-8 |
| [1] | 吴翠萍,朱一丹,李春燕,殷善开. 胆红素对神经干细胞活性和增殖的影响研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 1-6. |
| [2] | 周颖东,张梦娴,王青玲,康浩然,郭向东. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 72-78. |
| [3] | 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. |
| [4] | 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158. |
| [5] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
| [6] | 张依,王文俊,杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156. |
| [7] | 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
| [8] | 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104. |
| [9] | 张玲,叶海波,时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 31-35. |
| [10] | 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103. |
| [11] | 李小波,曹忠胜,辛洁,谢辰,陈锐. 罗格列酮对间歇性低氧小鼠氧化应激及认知功能的作用研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 45-49. |
| [12] | 李延忠. 肥胖与阻塞性睡眠呼吸暂停[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 1-4. |
| [13] | 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59. |
| [14] | 毕宏生,李树杰,崔 彦,王 慧 . 茶多酚防治STZ诱导的大鼠糖尿病性白内障的机制[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 1-05 . |
|
||