山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 1-10.doi: 10.6040/j.issn.1673-3770.0.2024.509

• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 •    

CAMK4介导胆红素所致听觉中枢神经元氧化应激损伤

柯冰冰1,陈铭1,王洪阳2,李春燕1,殷善开1   

  1. 1.上海交通大学医学院附属第六人民医院 耳鼻咽喉头颈外科/上海交通大学耳鼻咽喉研究所, 上海 200233;
    2.解放军总医院耳鼻咽喉头颈外科医学部 耳鼻咽喉内科/国家耳鼻咽喉疾病临床医学研究中心/教育部聋病重点实验室/聋病防治北京市重点实验室, 北京 100853
  • 发布日期:2025-06-04
  • 通讯作者: 李春燕. E-mail:7250012693@shsmu.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金(82322020);国家自然科学基金(82071042);国家重点研发计划青年科学家项目(2023YFC2509800)

CAMK4-mediated oxidative stress injury in auditory central neurons induced by bilirubin

KE Bingbing1, CHEN Ming1, WANG Hongyang2, LI Chunyan1, YIN Shankai1   

  1. 1. Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China2. Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Centerfor Otolaryngologic Diseases, Key Labof Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100853, China
  • Published:2025-06-04

摘要: 目的 探讨钙/钙调蛋白依赖性蛋白激酶4(calcium/calmodulin-dependent protein kinase IV, CAMK4)在胆红素介导的听觉中枢神经毒性中的作用。 方法 通过分子对接和微量热泳动技术(microscale thermophoresis, MST)评估CAMK4与胆红素的结合能力。采用石蜡切片免疫荧光染色法检测CAMK4在耳蜗核中的表达。在体外培养的耳蜗核原代神经元中,分别给予胆红素(25 μmol/L)或胆红素联合CAMK4抑制剂KN-93(1 μmol/L)处理,随后评估神经元的ROS水平、线粒体膜电位变化,进行Annexin V/PI染色及活/死细胞染色。 结果 分子对接分析显示,胆红素与CAMK4的结合能为-9.71 kcal/mol, MST检测得到平衡解离常数值为(1.294 4±1.080 3)μmol/L,提示二者具有较强的结合潜力。在耳蜗核中,CAMK4主要表达于神经元。体外实验结果表明,CAMK4抑制剂KN-93能够显著抑制高浓度胆红素诱导的耳蜗核神经元ROS蓄积、线粒体膜电位下降,以及细胞晚期凋亡和存活率下降。 结论 CAMK4在胆红素介导的听觉中枢氧化应激损伤中发挥重要作用。

关键词: 钙/钙调蛋白依赖性蛋白激酶4, 胆红素, 神经毒性, 氧化应激

Abstract: Objective The present study aims to investigate the role of calcium/calmodulin-dependent protein kinase 4(CAMK4)in bilirubin-mediated auditory central neurotoxicity. Methods The binding ability between CAMK4 and bilirubin was assessed using molecular docking and micro-scale thermophoresis(MST). The expression of CAMK4 in the cochlear nucleus was detected by immunofluorescence staining on paraffin sections. Primary cochlear nucleus neurons were cultured in vitro and treated with bilirubin(25 μmol/L)or bilirubin combined with the CAMK4 inhibitor KN-93(1 μmol/L). The neuronal ROS levels, mitochondrial membrane potential changes, Annexin V/PI staining, and live/dead cell staining were then evaluated. Results The molecular docking analysis revealed that the binding energy between bilirubin and CAMK4 was -9.71 kcal/mol, and the MST analysis gave a dissociation constant of(1.294 4±1.080 3)μmol/L, suggesting a strong binding affinity between the two. In the cochlear nucleus, CAMK4 was predominantly expressed in neurons. In vitro experiments demonstrated that the CAMK4 inhibitor KN-93 significantly suppressed bilirubin-induced ROS accumulation, mitochondrial membrane potential decline, late-stage apoptosis, and reduced cell survival in cochlear nucleus neurons. Conclusion CAMK4 has been demonstrated to play a crucial role in bilirubin-mediated oxidative stress injury in auditory central neurons.

Key words: Calcium/calmodulin-dependent protein kinase IV, bilirubin, neurotoxicity, oxidative stress

中图分类号: 

  • R764.4
[1] World Health Organization. World report on hearing [M]. Geneva: World Health Organization, 2021
[2] Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: mechanisms and management approaches[J]. N Engl J Med, 2013, 369(21): 2021-2030. doi:10.1056/nejmra1308124
[3] Qian S, Kumar P, Testai FD. Bilirubin encephalopathy[J]. Curr Neurol Neurosci Rep, 2022, 22(7): 343-353. doi:10.1007/s11910-022-01204-8
[4] Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn[J]. Physiol Rev, 2020, 100(3): 1291-1346. doi:10.1152/physrev.00004.2019
[5] Lai K, Song XL, Shi HS, et al. Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice[J]. Sci Transl Med, 2020, 12(530): eaax1337. doi:10.1126/scitranslmed.aax1337
[6] Shi HS, Lai K, Yin XL, et al. Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity[J]. Cell Death Dis, 2019, 10(10): 774. doi:10.1038/s41419-019-1979-1
[7] Gong LN, Liu HW, Lai K, et al. Selective vulnerability of GABAergic inhibitory interneurons to bilirubin neurotoxicity in the neonatal brain[J]. J Neurosci, 2024, 44(45): e0442242024. doi:10.1523/jneurosci.0442-24.2024
[8] 张玲,叶海波,时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044 ZHANG Ling, YE Haibo, SHI Haibo. A new mechanism of bilirubin-induced auditory nervous system injury[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044
[9] Liu HW, Gong LN, Lai K, et al. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage[J]. Neuron, 2023, 111(10): 1609-1625.e6. doi:10.1016/j.neuron.2023.02.022
[10] Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation[J]. Pediatr Res, 1996, 39(6): 1072-1077. doi:10.1203/00006450-199606000-00023
[11] Mao L, Lu J, Yang Q, et al. Bilirubin Targeting WNK1 to Alleviate NLRP3-Mediated Neuroinflammation[J]. Adv Sci(Weinh), 2025. doi:10.1002/advs.202407349.
[12] Wu H, Suo GH, Li TC, et al. CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism[J]. Cell Death Discov, 2022, 8(1): 482. doi:10.1038/s41420-022-01270-4
[13] Tang QY, Chen SX, Wu H, et al. Congenital hypothyroidism impairs spine growth of dentate granule cells by downregulation of CaMKIV[J]. Cell Death Discov, 2021, 7(1): 143. doi:10.1038/s41420-021-00530-z.
[14] Li ZZ, Lu JY, Zeng G, et al. miR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV(CAMK4)[J]. Cell Death Dis, 2019, 10: 789. doi:10.1038/s41419-019-1923-4
[15] Zhang XH, Griepentrog JE, Zou BB, et al. CaMKIV regulates mitochondrial dynamics during sepsis[J]. Cell Calcium, 2020, 92: 102286. doi:10.1016/j.ceca.2020.102286
[16] Saaciak K, Koszaka A,(·overZ)mudzka E, et al. The calcium/calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders[J]. Int J Mol Sci, 2021, 22(9): 4307. doi:10.3390/ijms22094307
[17] Yin Y, Gao D, Wang Y, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling[J]. Proc Natl Acad Sci U S A, 2016, 113(26): E3773-E3781. doi: 10.1073/pnas.1604519113
[18] Park D, Na M, Kim JA, et al. Activation of CaMKIV by soluble amyloid-β1-42 impedes trafficking of axonal vesicles and impairs activity-dependent synaptogenesis[J]. Sci Signal, 2017, 10(487): eaam8661. doi:10.1126/scisignal.aam8661
[19] Brito MA, Rosa AI, Falcão AS, et al. Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells[J]. Neurobiol Dis, 2008, 29(1): 30-40. doi:10.1016/j.nbd.2007.07.023
[20] Rodrigues CMP, Solá S, Brito MA, et al. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria[J]. J Hepatol, 2002, 36(3): 335-341. doi:10.1016/s0168-8278(01)00279-3
[21] Bianco A, Dvorák A, Capková N, et al. The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect[J]. Int J Mol Sci, 2020, 21(21): 8101. doi:10.3390/ijms21218101
[22] Vasavda C, Kothari R, Malla AP, et al. Bilirubin links heme metabolism to neuroprotection by scavenging superoxide[J]. Cell Chem Biol, 2019, 26(10): 1450-1460.e7. doi:10.1016/j.chembiol.2019.07.006
[23] Meixiong J, Vasavda C, Green D, et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch[J]. eLife, 2019, 8: e44116. doi:10.7554/elife.44116
[24] Gordon DM, Hong SH, Kipp ZA, et al. Identification of binding regions of bilirubin in the ligand-binding pocket of the peroxisome proliferator-activated receptor-A(PPARalpha)[J]. Molecules, 2021, 26(10): 2975. doi:10.3390/molecules26102975
[25] Koga T, Otomo K, Mizui M, et al. Calcium/calmodulin-dependent kinase IV facilitates the recruitment of interleukin-17-producing cells to target organs through the CCR6/CCL20 axis in Th17 cell-driven inflammatory diseases[J]. Arthritis Rheumatol, 2016, 68(8): 1981-1988. doi:10.1002/art.39665
[26] Koga T, Sato T, Furukawa K, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(5): 766-772. doi:10.1002/art.40785
[27] Pezhouman A, Singh N, Song Z, et al. Molecular basis of hypokalemia-induced ventricular fibrillation[J]. Circulation, 2015, 132(16): 1528-1537. doi:10.1161/CIRCULATIONAHA.115.016217
[28] Santulli G, Cipolletta E, Sorriento D, et al. CaMK4 gene deletion induces hypertension[J]. J Am Heart Assoc, 2012, 1(4): e001081. doi: 10.1161/JAHA.112.001081
[29] Wong MH, Samal AB, Lee MK, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II(CaMKII)activity by binding to Ca2+/CaM[J]. J Mol Biol, 2019, 431(7): 1440-1459. doi:10.1016/j.jmb.2019.02.001
[30] Lin ZD, Xu GY, Lu X, et al. Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca2+/CaMKII/Drp1 axis[J]. Aging Cell, 2024: e14440. doi:10.1111/acel.14440
[31] Lu S, Liao ZD, Lu XY, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes[J]. Circ Res, 2020, 126(10): 80-96. doi:10.1161/CIRCRESAHA.119.316288
[32] Zhao YL, James NA, Beshay AR, et al. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress[J]. Cardiovasc Res, 2021, 117(8): 1891-1907. doi:10.1093/cvr/cvaa238
[33] Ni YJ, Deng J, Bai HY, et al. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways[J]. J Cell Mol Med, 2022, 26(2): 312-325. doi:10.1111/jcmm.17081
[34] Dai XM, Meng JS, Deng SK, et al. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel[J]. Theranostics, 2020, 10(7): 3049-3063. doi:10.7150/thno.42385
[35] Fu LY, Zhang Y, Farokhzad RA, et al. ‘Passive’ nanoparticles for organ-selective systemic delivery: design, mechanism and perspective[J]. Chem Soc Rev, 2023, 52(21): 7579-7601. doi:10.1039/d2cs00998f
[36] Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. doi:10.1038/s41573-020-0090-8
[1] 吴翠萍,朱一丹,李春燕,殷善开. 胆红素对神经干细胞活性和增殖的影响研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 1-6.
[2] 周颖东,张梦娴,王青玲,康浩然,郭向东. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 72-78.
[3] 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117.
[4] 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158.
[5] 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34.
[6] 张依,王文俊,杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156.
[7] 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130.
[8] 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104.
[9] 张玲,叶海波,时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 31-35.
[10] 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103.
[11] 李小波,曹忠胜,辛洁,谢辰,陈锐. 罗格列酮对间歇性低氧小鼠氧化应激及认知功能的作用研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 45-49.
[12] 李延忠. 肥胖与阻塞性睡眠呼吸暂停[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 1-4.
[13] 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59.
[14] 毕宏生,李树杰,崔 彦,王 慧 . 茶多酚防治STZ诱导的大鼠糖尿病性白内障的机制[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 1-05 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!