山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 151-156.doi: 10.6040/j.issn.1673-3770.0.2021.070
张依,王文俊,杨安怀
ZHANG Yi, WANG Wenjun,YANG Anhuai
摘要: Sirtuins是一类组蛋白去乙酰化酶,它通过控制基因表达、DNA修复、代谢、氧化应激反应、线粒体功能等生物学进程来调节多种活动,而这类酶中,被研究最多的是沉默信息调节因子-1(sirtuin 1, SIRT1)。白藜芦醇作为上调SIRT1活性的天然多酚类化合物,具有很强的抗氧化和抗炎作用,在心脏保护、神经保护、化疗和延缓衰老等方面被广泛研究。而氧化应激和炎症在眼部疾病的发生和发展中起着关键的作用,这些疾病会导致视力渐进性丧失和(或)致盲。综述白藜芦醇在眼部疾病中的潜在用途及其应用的限制性。
中图分类号:
[1] Banez MJ, Geluz MI, Chandra A, et al. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health[J]. Nutr Res, 2020, 78: 11-26. doi: 10.1016/j.nutres.2020.03.002. [2] Castaldo L, Narváez A, Izzo L, et al. Red wine consumption and cardiovascular health[J]. Molecules, 2019, 24(19): E3626. doi:10.3390/molecules24193626. [3] Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and Neuroprotection: Impact and Its Therapeutic Potential in Alzheimer's Disease[J]. Front Pharmacol, 2020, 30(11): 619024. doi: 10.3389/fphar.2020.619024. [4] Uddin MS, Al Mamun A, Kabir MT, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration[J]. Eur J Pharmacol, 2020, 886: 173412. doi:10.1016/j.ejphar.2020.173412. [5] Ko JH, Sethi G, Um JY, et al. The Role of Resveratrol in Cancer Therapy[J]. Int J Mol Sci, 2017,18(12):2589. doi:10.3390/ijms18122589. [6] Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives[J]. Semin Cancer Biol, 2020, S1044-S579X(20)30150-4. doi:10.1016/j.semcancer.2020.06.014. [7] Vaiserman A, Koliada A, Zayachkivska A, et al. Nanodelivery of natural antioxidants: an anti-aging perspective[J]. Front Bioeng Biotechnol, 2020, 7: 447. doi: 10.3389/fbioe.2019.00447. [8] Li YR, Li SM, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity[J]. Biofactors, 2018, 44(1): 69-82. doi:10.1002/biof.1400. [9] Klimova B, Novotny M, Kuca K. Anti-aging drugs-prospect of longer life?[J]. Curr Med Chem, 2018, 25(17): 1946-1953. doi:10.2174/0929867325666171129215251. [10] Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms[J]. Prog Brain Res, 2015, 220: 37-57. doi:10.1016/bs.pbr.2015.05.005. [11] Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy[J]. Biochim Biophys Acta, 2015, 1852(11): 2474-2483. doi:10.1016/j.bbadis.2015.08.001. [12] Dib B, Lin HJ, Maidana DE, et al. Mitochondrial DNA has a pro-inflammatory role in AMD[J]. Biochim et Biophys Acta BBA - Mol Cell Res, 2015, 1853(11): 2897-2906. doi:10.1016/j.bbamcr.2015.08.012. [13] Abu-Amero KK, Kondkar AA, Chalam KV. Resveratrol and ophthalmic diseases[J]. Nutrients, 2016, 8(4): 200. doi:10.3390/nu8040200. [14] Zhou MW, Luo J, Zhang HM. Role of Sirtuin 1 in the pathogenesis of ocular disease(Review)[J]. Int J Mol Med, 2018, 42(1): 13-20. doi:10.3892/ijmm.2018.3623. [15] de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications[J]. Biochem Soc Trans, 2007, 35(Pt 5): 1156-1160. doi:10.1042/BST0351156. [16] Meng T, Xiao D, Muhammed A, et al. Anti-inflammatory action and mechanisms of resveratrol[J]. Molecules, 2021, 26(1): 229. doi: 10.3390/molecules26010229. [17] Anisimova NY, Kiselevsky MV, Sosnov AV, et al. Trans-, cis-, and dihydro-resveratrol: a comparative study[J]. Chem Cent J, 2011,5:88. doi: 10.1186/1752-153X-5-88. [18] 韩雪莲. 白藜芦醇及其类似物和衍生物的药理学研究进展[J]. 化学与生物工程, 2014,31(4): 15-19. HAN Xuelian. Pharmacological research progress of resveratrol and its analogues and derivatives[J]. Chem Bioeng, 2014,31(4): 15-19. [19] Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing[J]. Mol Nutr Food Res, 2005, 49(5): 377-395. doi:10.1002/mnfr.200400098. [20] Colin D, Gimazane A, Lizard G, et al. Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells[J]. Int J Cancer, 2009, 124(12): 2780-2788. doi:10.1002/ijc.24264. [21] Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives[J]. Ann N Y Acad Sci, 2011, 1215: 103-108. doi: 10.1111/j.1749-6632.2010.05865.x. [22] Brasnyó P, Molnár GA, Mohás M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients[J]. Br J Nutr,2011,106(3):383-389. doi: 10.1017/S0007114511000316. [23] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2006, 444(7117): 337-342. doi: 10.1038/nature05354. [24] Lançon A, Frazzi R, Latruffe N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases[J]. Molecules, 2016, 21(3): 304. doi:10.3390/molecules21030304. [25] Gertz M, Nguyen GTT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol[J]. PLoS One, 2012, 7(11): e49761. doi:10.1371/journal.pone.0049761. [26] Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metab, 2012, 15(5): 675-690. doi: 10.1016/j.cmet.2012.04.003. [27] Fourny N, Lan C, Sérée E, et al. Protective effect of resveratrol against ischemia-reperfusion injury via enhanced high energy compounds and eNOS-SIRT1 expression in type 2 diabetic female rat heart[J]. Nutrients, 2019, 11(1): 105. doi: 10.3390/nu11010105. [28] Yang M, Li Z, Tao J, et al. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells [J]. J Cancer Res Clin Oncol, 2021, 147(4): 1101-1113. doi: 10.1007/s00432-021-03510-z. [29] Albani D, Polito L, Signorini A, et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders[J]. Bio Factors, 2010, 36(5): 370-376. doi:10.1002/biof.118. [30] Petrocelli JJ, Drummond MJ. PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging[J]. Int J Environ Res Public Health, 2020, 17(22): E8650. doi:10.3390/ijerph17228650. [31] Malaguarnera. Influence of resveratrol on the immune response[J]. Nutrients, 2019, 11(5): 946. doi:10.3390/nu11050946. [32] Jaliffa C, Ameqrane I, Dansault A, et al. Sirt1 involvement in rd10 mouse retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3562-3572. doi: 10.1167/iovs.08-2817. [33] Alves LF, Fernandes BF, Burnier JV, et al. Expression of SIRT1 in ocular surface squamous neoplasia[J]. Cornea, 2012,31(7):817-819. doi: 10.1097/ICO.0b013e31823f7857. [34] Maloney SC, Antecka E, Odashiro AN, et al. Expression of SIRT1 and DBC1 in developing and adult retinas[J]. Stem Cells Int, 2012: 1-8. doi:10.1155/2012/908183. [35] Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration(AMD): associations with cardiovascular disease phenotypes and lipid factors[J]. Eye Vis(Lond), 2016, 3: 34. doi:10.1186/s40662-016-0063-5. [36] Ruan Y, Jiang SB, Gericke A. Age-related macular degeneration: role of oxidative stress and blood vessels[J]. Int J Mol Sci, 2021, 22(3): 1296. doi:10.3390/ijms22031296. [37] Tan W, Zou JL, Yoshida S, et al. The role of inflammation in age-related macular degeneration[J]. Int J Biol Sci, 2020, 16(15): 2989-3001. doi:10.7150/ijbs.49890. [38] Boyer DS, Schmidt-Erfurth U, van Lookeren Campagne M, et al. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target[J]. Retina, 2017, 37(5): 819-835. doi:10.1097/IAE.0000000000001392. [39] van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. doi:10.1002/path.4266. [40] 张依, 王文俊, 杨安怀. 基因治疗湿性年龄相关性黄斑变性的研究进展[J]. 国际眼科杂志, 2020,20(3): 481-484. ZHANG Yi, WANG Wenjun, YANG Anhuai. Research progress in gene therapy for wet age-related macular degeneration[J]. Int Eye Sci, 2020, 20(3): 481-484. [41] Maugeri A, Barchitta M, Mazzone MG, et al. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation[J]. Int J Mol Sci, 2018, 19(7): E2118. doi:10.3390/ijms19072118. [42] Cao L, Liu C, Wang F, et al. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway[J]. Revista Brasileira De Pesquisas Med E Biol, 2013, 46(8): 659-669. doi:10.1590/1414-431X20132903. [43] Maniadakis N, Konstantakopoulou E. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review[J]. Pharmacoeconomics, 2019, 37(8): 995-1010. doi:10.1007/s40273-019-00800-w. [44] Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. doi:10.1016/j.diabet.2019.04.002. [45] Mohammad G, Abdelaziz GM, Siddiquei MM, et al. Cross-talk between sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy[J]. Curr Eye Res, 2019, 44(10): 1133-1143. doi: 10.1080/02713683.2019.1625406. [46] Jiang TT, Gu JX, Chen WW, et al. Resveratrol inhibits high-glucose-induced inflammatory “metabolic memory” in human retinal vascular endothelial cells through SIRT1-dependent signaling[J]. Can J Physiol Pharmacol, 2019, 97(12): 1141-1151. doi: 10.1139/cjpp-2019-0201. [47] Delmas D, Cornebise C, Courtaut F, et al. New highlights of resveratrol: a review of properties against ocular diseases[J]. Int J Mol Sci, 2021, 22(3): 1295. doi:10.3390/ijms22031295. [48] Luo JY, He T, Yang JY, et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2): 335-344. doi: 10.1007/s00417-019-04580-z. [49] Chen SD, Fan Q, Li A, et al. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation[J]. Apoptosis, 2013, 18(7): 786-799. doi:10.1007/s10495-013-0837-3. [50] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641. [51] Doganay S, Borazan M, Iraz M, et al. The effect of resveratrol in experimental cataract model formed by sodium selenite[J]. Curr Eye Res, 2006, 31(2): 147-153. doi:10.1080/02713680500514685. [52] Lin TJ, Peng CH, Chiou SH, et al. Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract[J]. J Cataract Refract Surg, 2011, 37(7):1270-1274. doi: 10.1016/j.jcrs.2011.02.027. [53] Zheng T, Lu Y. Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans[J]. Curr Eye Res, 2011, 36(5): 449-455. doi:10.3109/02713683.2011.559301. [54] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641. [55] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons[J]. Proc Natl Acad Sci USA, 2007, 104(17): 7217-7222. doi:10.1073/pnas.0610068104. |
[1] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
[2] | 付奕豪,徐逸轩严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
[3] | 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104. |
[4] | 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103. |
[5] | 周华群,张立庆,徐朝琪,姜盼,王愿,刘晓静,董伟达. 姜黄素联合白藜芦醇抑制人头颈部肿瘤细胞系增殖的机制研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 67-72. |
[6] | 李小波,曹忠胜,辛洁,谢辰,陈锐. 罗格列酮对间歇性低氧小鼠氧化应激及认知功能的作用研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 45-49. |
[7] | 李延忠. 肥胖与阻塞性睡眠呼吸暂停[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 1-4. |
[8] | 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59. |
[9] | 毕宏生,李树杰,崔 彦,王 慧 . 茶多酚防治STZ诱导的大鼠糖尿病性白内障的机制[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 1-05 . |
|