山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 151-156.doi: 10.6040/j.issn.1673-3770.0.2021.070

• • 上一篇    下一篇

SIRT1激动剂白藜芦醇在眼部疾病中的研究进展

张依,王文俊,杨安怀   

  1. 武汉大学人民医院 眼科中心, 湖北 武汉 430060
  • 发布日期:2022-04-15
  • 通讯作者: 杨安怀. E-mail:yah0525@126.com

Research progress of SIRT1 activation by resveratrol in ocular diseases

ZHANG Yi, WANG Wenjun,YANG Anhuai   

  1. Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
  • Published:2022-04-15

摘要: Sirtuins是一类组蛋白去乙酰化酶,它通过控制基因表达、DNA修复、代谢、氧化应激反应、线粒体功能等生物学进程来调节多种活动,而这类酶中,被研究最多的是沉默信息调节因子-1(sirtuin 1, SIRT1)。白藜芦醇作为上调SIRT1活性的天然多酚类化合物,具有很强的抗氧化和抗炎作用,在心脏保护、神经保护、化疗和延缓衰老等方面被广泛研究。而氧化应激和炎症在眼部疾病的发生和发展中起着关键的作用,这些疾病会导致视力渐进性丧失和(或)致盲。综述白藜芦醇在眼部疾病中的潜在用途及其应用的限制性。

关键词: 白藜芦醇, 沉默信息调节因子-1, 氧化应激, 组蛋白去乙酰化酶

Abstract: Sirtuins are a class of histone deacetylases that regulate a variety of activities through the control of gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and other biological processes. Sirtuin 1(SIRT1)has been most widely studied. Resveratrol is a natural polyphenolic compound that upregulates SIRT1 activity. Resveratrol has strong antioxidant and anti-inflammatory activities, and has been widely studied in cardiac protection, neuroprotection, chemotherapy, and anti-aging. Oxidative stress and inflammation play key roles in the development and progression of eye diseases, which can lead to progressive vision loss and even blindness. This article briefly reviews the potential use of resveratrol in ocular diseases and the limitations of its applications.

Key words: Resveratrol, SIRT1, Oxidative stress, Inflammation, Histone deacetylase

中图分类号: 

  • R771
[1] Banez MJ, Geluz MI, Chandra A, et al. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health[J]. Nutr Res, 2020, 78: 11-26. doi: 10.1016/j.nutres.2020.03.002.
[2] Castaldo L, Narváez A, Izzo L, et al. Red wine consumption and cardiovascular health[J]. Molecules, 2019, 24(19): E3626. doi:10.3390/molecules24193626.
[3] Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and Neuroprotection: Impact and Its Therapeutic Potential in Alzheimer's Disease[J]. Front Pharmacol, 2020, 30(11): 619024. doi: 10.3389/fphar.2020.619024.
[4] Uddin MS, Al Mamun A, Kabir MT, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration[J]. Eur J Pharmacol, 2020, 886: 173412. doi:10.1016/j.ejphar.2020.173412.
[5] Ko JH, Sethi G, Um JY, et al. The Role of Resveratrol in Cancer Therapy[J]. Int J Mol Sci, 2017,18(12):2589. doi:10.3390/ijms18122589.
[6] Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives[J]. Semin Cancer Biol, 2020, S1044-S579X(20)30150-4. doi:10.1016/j.semcancer.2020.06.014.
[7] Vaiserman A, Koliada A, Zayachkivska A, et al. Nanodelivery of natural antioxidants: an anti-aging perspective[J]. Front Bioeng Biotechnol, 2020, 7: 447. doi: 10.3389/fbioe.2019.00447.
[8] Li YR, Li SM, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity[J]. Biofactors, 2018, 44(1): 69-82. doi:10.1002/biof.1400.
[9] Klimova B, Novotny M, Kuca K. Anti-aging drugs-prospect of longer life?[J]. Curr Med Chem, 2018, 25(17): 1946-1953. doi:10.2174/0929867325666171129215251.
[10] Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms[J]. Prog Brain Res, 2015, 220: 37-57. doi:10.1016/bs.pbr.2015.05.005.
[11] Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy[J]. Biochim Biophys Acta, 2015, 1852(11): 2474-2483. doi:10.1016/j.bbadis.2015.08.001.
[12] Dib B, Lin HJ, Maidana DE, et al. Mitochondrial DNA has a pro-inflammatory role in AMD[J]. Biochim et Biophys Acta BBA - Mol Cell Res, 2015, 1853(11): 2897-2906. doi:10.1016/j.bbamcr.2015.08.012.
[13] Abu-Amero KK, Kondkar AA, Chalam KV. Resveratrol and ophthalmic diseases[J]. Nutrients, 2016, 8(4): 200. doi:10.3390/nu8040200.
[14] Zhou MW, Luo J, Zhang HM. Role of Sirtuin 1 in the pathogenesis of ocular disease(Review)[J]. Int J Mol Med, 2018, 42(1): 13-20. doi:10.3892/ijmm.2018.3623.
[15] de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications[J]. Biochem Soc Trans, 2007, 35(Pt 5): 1156-1160. doi:10.1042/BST0351156.
[16] Meng T, Xiao D, Muhammed A, et al. Anti-inflammatory action and mechanisms of resveratrol[J]. Molecules, 2021, 26(1): 229. doi: 10.3390/molecules26010229.
[17] Anisimova NY, Kiselevsky MV, Sosnov AV, et al. Trans-, cis-, and dihydro-resveratrol: a comparative study[J]. Chem Cent J, 2011,5:88. doi: 10.1186/1752-153X-5-88.
[18] 韩雪莲. 白藜芦醇及其类似物和衍生物的药理学研究进展[J]. 化学与生物工程, 2014,31(4): 15-19. HAN Xuelian. Pharmacological research progress of resveratrol and its analogues and derivatives[J]. Chem Bioeng, 2014,31(4): 15-19.
[19] Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing[J]. Mol Nutr Food Res, 2005, 49(5): 377-395. doi:10.1002/mnfr.200400098.
[20] Colin D, Gimazane A, Lizard G, et al. Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells[J]. Int J Cancer, 2009, 124(12): 2780-2788. doi:10.1002/ijc.24264.
[21] Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives[J]. Ann N Y Acad Sci, 2011, 1215: 103-108. doi: 10.1111/j.1749-6632.2010.05865.x.
[22] Brasnyó P, Molnár GA, Mohás M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients[J]. Br J Nutr,2011,106(3):383-389. doi: 10.1017/S0007114511000316.
[23] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2006, 444(7117): 337-342. doi: 10.1038/nature05354.
[24] Lançon A, Frazzi R, Latruffe N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases[J]. Molecules, 2016, 21(3): 304. doi:10.3390/molecules21030304.
[25] Gertz M, Nguyen GTT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol[J]. PLoS One, 2012, 7(11): e49761. doi:10.1371/journal.pone.0049761.
[26] Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metab, 2012, 15(5): 675-690. doi: 10.1016/j.cmet.2012.04.003.
[27] Fourny N, Lan C, Sérée E, et al. Protective effect of resveratrol against ischemia-reperfusion injury via enhanced high energy compounds and eNOS-SIRT1 expression in type 2 diabetic female rat heart[J]. Nutrients, 2019, 11(1): 105. doi: 10.3390/nu11010105.
[28] Yang M, Li Z, Tao J, et al. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells [J]. J Cancer Res Clin Oncol, 2021, 147(4): 1101-1113. doi: 10.1007/s00432-021-03510-z.
[29] Albani D, Polito L, Signorini A, et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders[J]. Bio Factors, 2010, 36(5): 370-376. doi:10.1002/biof.118.
[30] Petrocelli JJ, Drummond MJ. PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging[J]. Int J Environ Res Public Health, 2020, 17(22): E8650. doi:10.3390/ijerph17228650.
[31] Malaguarnera. Influence of resveratrol on the immune response[J]. Nutrients, 2019, 11(5): 946. doi:10.3390/nu11050946.
[32] Jaliffa C, Ameqrane I, Dansault A, et al. Sirt1 involvement in rd10 mouse retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3562-3572. doi: 10.1167/iovs.08-2817.
[33] Alves LF, Fernandes BF, Burnier JV, et al. Expression of SIRT1 in ocular surface squamous neoplasia[J]. Cornea, 2012,31(7):817-819. doi: 10.1097/ICO.0b013e31823f7857.
[34] Maloney SC, Antecka E, Odashiro AN, et al. Expression of SIRT1 and DBC1 in developing and adult retinas[J]. Stem Cells Int, 2012: 1-8. doi:10.1155/2012/908183.
[35] Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration(AMD): associations with cardiovascular disease phenotypes and lipid factors[J]. Eye Vis(Lond), 2016, 3: 34. doi:10.1186/s40662-016-0063-5.
[36] Ruan Y, Jiang SB, Gericke A. Age-related macular degeneration: role of oxidative stress and blood vessels[J]. Int J Mol Sci, 2021, 22(3): 1296. doi:10.3390/ijms22031296.
[37] Tan W, Zou JL, Yoshida S, et al. The role of inflammation in age-related macular degeneration[J]. Int J Biol Sci, 2020, 16(15): 2989-3001. doi:10.7150/ijbs.49890.
[38] Boyer DS, Schmidt-Erfurth U, van Lookeren Campagne M, et al. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target[J]. Retina, 2017, 37(5): 819-835. doi:10.1097/IAE.0000000000001392.
[39] van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. doi:10.1002/path.4266.
[40] 张依, 王文俊, 杨安怀. 基因治疗湿性年龄相关性黄斑变性的研究进展[J]. 国际眼科杂志, 2020,20(3): 481-484. ZHANG Yi, WANG Wenjun, YANG Anhuai. Research progress in gene therapy for wet age-related macular degeneration[J]. Int Eye Sci, 2020, 20(3): 481-484.
[41] Maugeri A, Barchitta M, Mazzone MG, et al. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation[J]. Int J Mol Sci, 2018, 19(7): E2118. doi:10.3390/ijms19072118.
[42] Cao L, Liu C, Wang F, et al. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway[J]. Revista Brasileira De Pesquisas Med E Biol, 2013, 46(8): 659-669. doi:10.1590/1414-431X20132903.
[43] Maniadakis N, Konstantakopoulou E. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review[J]. Pharmacoeconomics, 2019, 37(8): 995-1010. doi:10.1007/s40273-019-00800-w.
[44] Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. doi:10.1016/j.diabet.2019.04.002.
[45] Mohammad G, Abdelaziz GM, Siddiquei MM, et al. Cross-talk between sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy[J]. Curr Eye Res, 2019, 44(10): 1133-1143. doi: 10.1080/02713683.2019.1625406.
[46] Jiang TT, Gu JX, Chen WW, et al. Resveratrol inhibits high-glucose-induced inflammatory “metabolic memory” in human retinal vascular endothelial cells through SIRT1-dependent signaling[J]. Can J Physiol Pharmacol, 2019, 97(12): 1141-1151. doi: 10.1139/cjpp-2019-0201.
[47] Delmas D, Cornebise C, Courtaut F, et al. New highlights of resveratrol: a review of properties against ocular diseases[J]. Int J Mol Sci, 2021, 22(3): 1295. doi:10.3390/ijms22031295.
[48] Luo JY, He T, Yang JY, et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2): 335-344. doi: 10.1007/s00417-019-04580-z.
[49] Chen SD, Fan Q, Li A, et al. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation[J]. Apoptosis, 2013, 18(7): 786-799. doi:10.1007/s10495-013-0837-3.
[50] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641.
[51] Doganay S, Borazan M, Iraz M, et al. The effect of resveratrol in experimental cataract model formed by sodium selenite[J]. Curr Eye Res, 2006, 31(2): 147-153. doi:10.1080/02713680500514685.
[52] Lin TJ, Peng CH, Chiou SH, et al. Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract[J]. J Cataract Refract Surg, 2011, 37(7):1270-1274. doi: 10.1016/j.jcrs.2011.02.027.
[53] Zheng T, Lu Y. Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans[J]. Curr Eye Res, 2011, 36(5): 449-455. doi:10.3109/02713683.2011.559301.
[54] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641.
[55] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons[J]. Proc Natl Acad Sci USA, 2007, 104(17): 7217-7222. doi:10.1073/pnas.0610068104.
[1] 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34.
[2] 付奕豪,徐逸轩严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130.
[3] 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104.
[4] 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103.
[5] 周华群,张立庆,徐朝琪,姜盼,王愿,刘晓静,董伟达. 姜黄素联合白藜芦醇抑制人头颈部肿瘤细胞系增殖的机制研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 67-72.
[6] 李小波,曹忠胜,辛洁,谢辰,陈锐. 罗格列酮对间歇性低氧小鼠氧化应激及认知功能的作用研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 45-49.
[7] 李延忠. 肥胖与阻塞性睡眠呼吸暂停[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 1-4.
[8] 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59.
[9] 毕宏生,李树杰,崔 彦,王 慧 . 茶多酚防治STZ诱导的大鼠糖尿病性白内障的机制[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 1-05 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董卫红,毕宏生,王兴荣,马先祯,杜秀娟,俞 超 . 玻璃体视网膜联合术治疗复杂性眼外伤52例[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 362 -365 .
[2] 王相如,蒋 华,张 霞,王晓莉 . 穿透角膜移植术各屈光变量及其相互关系[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 373 -375 .
[3] 许耀东,刘 翔,区永康,郑亿庆,陈穗俊,纪树芳,郭晓娟 . 先天性外耳道闭锁成形术后狭窄或再闭锁10例[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 427 -428 .
[4] 田省霞,王小红,陈馨,曹连涛,薛琨 . 鼻内镜术后局部应用糖皮质激素治疗慢性[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 51 -52 .
[5] 殷济清 . 血府逐瘀胶囊治疗扁桃体炎、咽喉炎28例[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 477 -477 .
[6] 邢金燕,,陶爱林,张建国 . 变应性鼻炎的发病机制研究现状[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 451 -455 .
[7] 谢志刚, 张喜英 . 儿童及青少年鼻窦炎内窥镜术后鼻腔黏连的预防与处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 242 -243 .
[8] 冯云1,2 ,李文婷3 ,唐平章1 ,徐震纲1 ,张彬1 ,王乃利3
. 胸背动脉穿支皮瓣的解剖学研究
及其在头颈修复中的意义
[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 20 -23 .
[9] 梁利伟. 唇龈沟径路治疗鼻中隔软骨前脱位[J]. 山东大学耳鼻喉眼学报, 2009, 23(3): 50 -51 .
[10] 邓享坤,王金泉,邱志宏,邓秀玉. 鼻内镜下鼻腔鼻窦血管瘤切除术[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 43 .