Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 30-35.doi: 10.6040/j.issn.1673-3770.1.2022.572
Previous Articles Next Articles
LIANG XuOverview,SHI Li
CLC Number:
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29):1-464. doi:10.4193/Rhin20.600. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科组.中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志,2019(2):81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001. [3] van der Veen J, Seys SF, Timmermans M, et al. Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre[J]. Allergy, 2017, 72(2):282-290. doi:10.1111/all.12983. [4] Deconde AS, Mace JC, Levy J M, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3):550-555. doi:10.1002/lary.26391. [5] Lou H, Meng Y, Piao Y, et al. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population[J]. Am J Rhinol Allergy, 2015, 29(5):350-356. doi:10.2500/ajra.2015.29.4231. [6] Hox V, Lourijsen E, Jordens A, et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper[J]. Clin Transl Allergy, 2020, 3(10):1. doi:10.1186/s13601-019-0303-6. [7] Cao PP, Wang ZC, Schleimer RP, et al. Pathophysiologic mechanisms of chronic rhinosinusitis and their roles in emerging disease endotypes[J]. Ann Allergy Asthma Immunol, 2019, 122(1):33-40. doi:10.1016/j.anai.2018.10.014. [8] Zhang N, Van Zele T, Perez-Novo C, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease[J]. J Allergy Clin Immunol, 2008, 122(5):961-968. doi:10.1016/j.jaci.2008.07.008. [9] Michel O, Dinh PH, Doyen V, et al. Anti-TNF inhibits the airways neutrophilic inflammation induced by inhaled endotoxin in human[J]. BMC Pharmacol Toxicol, 2014,3(15):60. doi:10.1186/2050-6511-15-60. [10] Malaviya R, Laskin JD, Laskin DL. Anti-TNFalpha therapy in inflammatory lung diseases[J]. Pharmacol Ther, 2017, 180:90-98. doi:10.1016/j.pharmthera.2017.06.008. [11] Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor[J]. Nat Clin Pract Rheumatol, 2006, 2(11):602-610. doi:10.1038/ncprheum0336. [12] Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation[J]. J Allergy Clin Immunol, 2011, 128(4):728-732. doi:10.1016/j.jaci.2011.07.049. [13] Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines[J]. Am J Respir Crit Care Med, 2018, 198(4):452-463. doi:10.1164/rccm.201710-2112OC. [14] Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2):460-469. doi:10.1016/j.jaci.2018.03.019. [15] Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2013, 132(3):593-600. doi:10.1016/j.jaci.2013.04.005. [16] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4):432-439. doi:10.1164/rccm.201212-2227OC. [17] Poposki JA, Klingler AI, Tan BK, et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps[J]. Immun Inflamm Dis, 2017, 5(3):233-243. doi:10.1002/iid3.161. [18] Nagarkar DR, Poposki JA, Comeau MR, et al. Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin[J]. J Allergy Clin Immunol, 2012,130(1):225-232. doi:10.1016/j.jaci.2012.04.019. [19] Cao PP, Zhang YN, Liao B, et al. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2014, 44(5):690-700. doi:10.1111/cea.12304. [20] Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps(CRSwNP)and biologics: Definitions and management[J]. J Allergy Clin Immunol, 2021,147(1):29-36. doi:10.1016/j.jaci.2020.11.013. [21] Kim H, Ellis AK, Fischer D, et al. Asthma biomarkers in the age of biologics[J]. Allergy Asthma Clin Immunol, 2017, 17(13):48. doi:10.1186/s13223-017-0219-4. [22] Bachert C, Wagenmann M, Hauser U, et al. IL-5 synthesis is upregulated in human nasal polyp tissue[J]. J Allergy Clin Immunol, 1997, 99(6 Pt 1):837-842. doi:10.1016/s0091-6749(97)80019-x. [23] Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial[J]. J Allergy Clin Immunol, 2017, 140(4):1024-1031. doi:10.1016/j.jaci.2017.05.044. [24] Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis[J]. J Allergy Clin Immunol, 2011, 128(5):989-995. doi:10.1016/j.jaci.2011.07.056. [25] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006,118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031. [26] Mitchell P, Leigh R. A drug safety review of treating eosinophilic asthma with monoclonal antibodies[J]. Expert Opin Drug Saf, 2019, 18(12):1161-1170. doi:10.1080/14740338.2019.1675634. [27] Tamechika SY, Isogai S, Maeda S, et al. Improvement of Chronic Rhinosinusitis and Reduction of the Myeloperoxidase-Antineutrophil Cytoplasmic Antibody Titer in a Patient with Eosinophilic Granulomatosis with Polyangiitis by Additional Mepolizumab[J]. Case Rep Rheumatol, 2021, 29:5561762. doi:10.1155/2021/5561762. [28] Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma[J]. Allergy, 2019, 74(12):2312-2319. doi:10.1111/all.13875. [29] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209):1638-1650. doi:10.1016/S0140-6736(19)31881-1. [30] Desrosiers M, Mannent LP, Amin N, et al. Dupilumab reduces systemic corticosteroid use and sinonasal surgery rate in CRSwNP[J]. Rhinology, 2021, 59(3):301-311. doi:10.4193/Rhin20.415. [31] Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma[J]. J Allergy Clin Immunol, 2013, 131(1):110-116. doi:10.1016/j.jaci.2012.07.047. [32] Pinto JM, Mehta N, Ditineo M, et al. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis[J]. Rhinology, 2010, 48(3):318-324. doi:10.4193/Rhino09.144. [33] Wu Q, Yuan L, Qiu H, et al. Efficacy and safety of omalizumab in chronic rhinosinusitis with nasal polyps: a systematic review and meta-analysis of randomised controlled trials[J]. BMJ Open, 2021, 11(9):e47344. doi:10.1136/bmjopen-2020-047344. [34] Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis[J]. J Allergy Clin Immunol, 2015, 136(6):1431-1440. doi:10.1016/j.jaci.2015.10.010. [35] Sel S, Wegmann M, Dicke T, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme[J]. J Allergy Clin Immunol, 2008, 121(4):910-916. doi:10.1016/j.jaci.2007.12.1175. [36] Garn H, Renz H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy[J]. Eur J Immunol, 2017, 47(1):22-30. doi:10.1002/eji.201646450. [37] Gauvreau GM, O'Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses[J]. N Engl J Med, 2014, 370(22):2102-2110. doi:10.1056/NEJMoa1402895. [38] Shin HW, Kim DK, Park MH, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2015, 135(6):1476-1485. doi:10.1016/j.jaci.2015.01.003. [39] Teufelberger AR, Nordengrun M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D[J]. J Allergy Clin Immunol, 2018, 141(2):549-559. doi:10.1016/j.jaci.2017.05.004. [40] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006, 118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031. [41] Eidenschenk C, Rutz S, Liesenfeld O, et al. Role of IL-22 in microbial host defense[J]. Curr Top Microbiol Immunol, 2014, 380:213-236. doi:10.1007/978-3-662-43492-5_10. [42] Nirula A, Nilsen J, Klekotka P, et al. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases[J]. Rheumatology(Oxford), 2016, 55(suppl 2):i43-i55.doi:10.1093/rheumatology/kew346. [43] Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188(11):1294-1302. doi:10.1164/rccm.201212-2318OC. [44] Catley MC, Coote J, Bari M, et al. Monoclonal antibodies for the treatment of asthma[J]. Pharmacol Ther, 2011, 132(3):333-351.doi:10.1016/j.pharmthera.2011.09.005. [45] Legrand F, Cao Y, Wechsler JB, et al. Sialic acid-binding immunoglobulin-like lectin(Siglec)8 in patients with eosinophilic disorders: Receptor expression and targeting using chimeric antibodies[J]. J Allergy Clin Immunol, 2019, 143(6):2227-2237. doi:10.1016/j.jaci.2018.10.066. |
[1] | ZHANG YuOverview,QU YiGuidance. Research progress on the pathogenesis and control of ocular toxoplasmosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 70-76. |
[2] | SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112. |
[3] | ZHANG Keren, LEI Chunyan, ZHANG Meixia. Floppy eyelid syndrome associated with obstructive sleep apnea: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 125-128. |
[4] | SHI Anni, ZHANG Jiajia, BAI Peng, ZHANG Chongyang. Analysis of a therapeutic modality for sudden deafness utilizing neck acupuncture comprising seven lines of treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 103-107. |
[5] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[6] | XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19. |
[7] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[8] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[9] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[10] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[11] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[12] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[13] | QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77. |
[14] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[15] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
|