Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 64-70.doi: 10.6040/j.issn.1673-3770.0.2021.577
Previous Articles Next Articles
LIN Hai, ZHU YingOverview,ZHANG Weitian
CLC Number:
[1] Zhang Y, Gevaert E, Lou HF, et al. Chronic rhinosinusitis in Asia[J]. J Allergy Clin Immunol, 2017, 140(5): 1230-1239. doi:10.1016/j.jaci.2017.09.009. [2] Kato A, Peters AT, Stevens WW, et al. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches[J]. Allergy, 2022, 77(3): 812-826. doi:10.1111/all.15074. [3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021. [4] Harraz OF, Jensen LJ. Aging, calcium channel signaling and vascular tone[J]. Mech Ageing Dev, 2020, 191: 111336. doi:10.1016/j.mad.2020.111336. [5] Miyake MM, Nocera A, Levesque P, et al. Double-blind placebo-controlled randomized clinical trial of verapamil for chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2017, 140(1): 271-273. doi:10.1016/j.jaci.2016.11.014. [6] de Almeida AS, Bernardes LB, Trevisan G. TRP channels in cancer pain[J]. Eur J Pharmacol, 2021, 904: 174185. doi:10.1016/j.ejphar.2021.174185. [7] Tang R, Li ZP, Li MX, et al. Pro-inflammatory role of transient receptor potential canonical channel 6 in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018, 8(11): 1334-1341. doi:10.1002/alr.22208. [8] Tong XT, Liu PQ, Zhou HQ, et al. The expression and significance of TRPM8 among chronic rhinosinusitis with nasal polyps[J]. Chin J Otorhinolaryngol Head Neck Surg, 2021, 56(10): 1059-1065. doi:10.3760/cma.j.cn115330-20210430-00243. [9] Tokunaga T, Ninomiya T, Kato Y, et al. The significant expression of TRPV3 in nasal polyps of eosinophilic chronic rhinosinusitis[J]. Allergol Int, 2017, 66(4): 610-616. doi:10.1016/j.alit.2017.04.002. [10] Tóth E, Tornóczky T, Kneif J, et al. Upregulation of extraneuronal TRPV1 expression in chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2018, 56(3): 245-254. doi:10.4193/Rhin17.108. [11] Butorac C, Krizova A, Derler I. Review: structure and activation mechanisms of CRAC channels[J]. Adv Exp Med Biol, 2020, 1131: 547-604. doi:10.1007/978-3-030-12457-1_23. [12] Lin L, Dai F, Chen ZC, et al. The intervention of CRAC channels alleviates inflammatory responses in nasal polyps[J]. Int Arch Allergy Immunol, 2015, 167(4): 270-279. doi:10.1159/000441109. [13] Lin L, Dai F, Chen ZC, et al. In vitro treatment with 2-APB inhibits the inflammation in nasal polyps[J]. Otolaryngol Head Neck Surg, 2015, 153(3): 461-467. doi:10.1177/0194599815589582. [14] Cocozza G, Garofalo S, Capitani R, et al. Microglial potassium channels: from homeostasis to neurodegeneration[J]. Biomolecules, 2021, 11(12): 1774. doi:10.3390/biom11121774. [15] Kim HK, Kim JH, Kim HJ, et al. Role of TWIK-related potassium channel-1 in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2018, 141(3): 1124-1127.e6. doi:10.1016/j.jaci.2017.10.012. [16] Kohanski MA, Brown L, Orr M, et al. Bitter taste receptor agonists regulate epithelial two-pore potassium channels via cAMP signaling[J]. Respir Res, 2021, 22(1): 31. doi:10.1186/s12931-021-01631-0. [17] Mutchler SM, Kirabo A, Kleyman TR. Epithelial sodium channel and salt-sensitive hypertension[J]. Hypertension, 2021, 77(3): 759-767. doi:10.1161/HYPERTENSIONAHA.120.14481. [18] Jiang YM, Xu J, Chen YQ, et al. Expression and distribution of epithelial sodium channel in nasal polyp and nasal mucosa[J]. Eur Arch Otorhinolaryngol, 2015, 272(11): 3361-3366. doi:10.1007/s00405-014-3477-5. [19] Yasuda M, Niisato N, Miyazaki H, et al. Epithelial Na+ channel and ion transport in human nasal polyp and paranasal sinus mucosa[J]. Biochem Biophys Res Commun, 2007, 362(3): 753-758. doi:10.1016/j.bbrc.2007.08.065. [20] Kim JH, Kwon HJ, Jang YJ. Effects of rhinovirus infection on the expression and function of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel in human nasal mucosa[J]. Ann Allergy Asthma Immunol, 2012, 108(3): 182-187. doi:10.1016/j.anai.2011.12.018. [21] Saber A, Nakka SS, Hussain R, et al. Staphylococcus aureus in chronic rhinosinusitis: the effect on the epithelial chloride channel(cystic fibrosis transmembrane conductance regulator, CFTR)and the epithelial sodium channel(ENaC)physiology[J]. Acta Otolaryngol, 2019, 139(7): 652-658. doi:10.1080/00016489.2019.1603513. [22] Ba GY, Tang R, Mao S, et al. The expression and regulation of Na+-K+-ATPase in nasal epithelial cells of chronic rhinosinusitis with nasal polyps[J]. ORL J Otorhinolaryngol Relat Spec, 2022, 84(2):139-146. doi:10.1159/000517101. [23] Liu YN, Liu ZT, Wang KW. The Ca2+-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases? [J]. Acta Pharm Sin B, 2021, 11(6): 1412-1433. doi:10.1016/j.apsb.2020.12.003. [24] Gaurav R, Bewtra AK, Agrawal DK. Chloride channel 3 channels in the activation and migration of human blood eosinophils in allergic asthma[J]. Am J Respir Cell Mol Biol, 2015, 53(2): 235-245. doi:10.1165/rcmb.2014-0300OC. [25] Li HB, Han DM, Zhou B, et al. Expressions of chloride channel ClC-2 and ClC-3 in human nasal polyps[J]. J Clin Otorhinolaryngol, 2003, 17(5): 266-267. [26] Li HB, Jiang HY, Cheng L, et al. Possible role of transforming growth factor beta and interleukin-4 in the up-regulation of CLC-2 and CLC-3 in chronic rhinosinusitis[J]. Am J Rhinol, 2007, 21(4): 389-394. doi:10.2500/ajr.2007.21.3045. [27] Maule G, Ensinck M, Bulcaen M, et al. Rewriting CFTR to cure cystic fibrosis[J]. Prog Mol Biol Transl Sci, 2021, 182: 185-224. doi:10.1016/bs.pmbts.2020.12.018. [28] Nguyen TN, Do BH, Kitamura T, et al. Expression of Cl- channels/transporters in nasal polyps[J]. Eur Arch Otorhinolaryngol, 2020, 277(8): 2263-2270. doi:10.1007/s00405-020-05981-1. [29] McCormick J, Hoffman K, Thompson H, et al. Differential chloride secretory capacity in transepithelial ion transport properties in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2020, 34(6): 830-837. doi:10.1177/1945892420930975. [30] Beswick DM, Humphries SM, Balkissoon CD, et al. Impact of cystic fibrosis transmembrane conductance regulator therapy on chronic rhinosinusitis and health status: deep learning CT analysis and patient-reported outcomes[J]. Ann Am Thorac Soc, 2022, 19(1): 12-19. doi:10.1513/AnnalsATS.202101-057OC. [31] Kim HK, Kook JH, Kang KR, et al. Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC[J]. Laryngoscope, 2016, 126(11): E347-E355. doi:10.1002/lary.26109. [32] Salomon JJ, Albrecht T, Graeber SY, et al. Chronic rhinosinusitis with nasal polyps is associated with impaired TMEM16A-mediated epithelial chloride secretion[J]. J Allergy Clin Immunol, 2021, 147(6): 2191-2201.e2. doi:10.1016/j.jaci.2021.02.008. [33] Molinari G, Molinari L, Nervo E. Environmental and endogenous acids can trigger allergic-type airway reactions[J]. Int J Environ Res Public Health, 2020, 17(13): E4688. doi:10.3390/ijerph17134688. [34] Min JY, Ocampo CJ, Stevens WW, et al. Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: possible role of the nongastric H, K-ATPase[J]. J Allergy Clin Immunol, 2017, 139(1): 130-141.e11. doi:10.1016/j.jaci.2016.07.020. [35] Vullo S, Kellenberger S. A molecular view of the function and pharmacology of acid-sensing ion channels[J]. Pharmacol Res, 2020, 154: 104166. doi:10.1016/j.phrs.2019.02.005. [36] Tang R, Ba GY, Li MX, et al. Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps[J]. Eur Arch Otorhinolaryngol, 2021, 278(7): 2379-2386. doi:10.1007/s00405-020-06521-7. [37] Cai XY, Yao Y, Teng F, et al. The role of P2X7 receptor in infection and metabolism: based on inflammation and immunity[J]. Int Immunopharmacol, 2021, 101(Pt A): 108297. doi:10.1016/j.intimp.2021.108297. [38] Wang Y, Chen S, Wang WW, et al. Role of P2X7R in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24: 521. doi:10.3892/mmr.2021.12160. [39] 李春花, 刘肖, 刘红兵. 半乳糖凝集素10与慢性鼻窦炎伴鼻息肉[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 106-111. doi:10.6040/j.issn.1673-3770.0.2020.163. LI Chunhua, LIU Xiao, LIU Hongbing. Galectin-10 and chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 106-111.doi:10.6040/j.issn.1673-3770.0.2020.163. [40] 康雪, 叶菁. 紧密连接与慢性鼻-鼻窦炎发病机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 112-115. doi:10.6040/j.issn.1673-3770.0.2017.042. KANG Xue, YE Jing. Progress of tight junctions and chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(2): 112-115.doi:10.6040/j.issn.1673-3770.0.2017.042. |
[1] | DUAN Xinyan, SONG Zhongyi, WANG Ning, ZI Xicun, PAN Xinliang. Application value of distortion product otoacoustic emission and high stimulation rate auditory brainstem response in patients with normal hearing tinnitus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 6-10. |
[2] | LI Dingbo, TANG Zhiyuan, DENG Zhiyi, ZENG Xianhai, ZHANG Qiuhang, WANG Zaixing. Curative effect analysis of low-temperature plasma radiofrequency ablation in 27 cases of drug-related rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 11-17. |
[3] | CHEN Dongyan, QIAN Ye, WEI Dongmin, LI Wenming, XIA Tongliang, LEI Dapeng, PAN Xinliang. Clinical value of high-frequency ultrasound in the diagnosis of lymph node metastasis in hypopharyngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 18-23. |
[4] | SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. |
[5] | LI Shijin, TANG Angcang, YANG Bi, WANG Jianglan, LIU Longqian. Long-term effectiveness of virtual reality-based vision therapy for convergence insufficiency:a random clinical trial [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 35-40. |
[6] | HU Zunxia, SIMA Jing, QIN Bo, CAO Jiaguo, PAN Wei. Comparative study on the use of contact lens in Nd: YAG laser posterior capsulotomy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 41-45. |
[7] | GU Ranran, LI Fengjiao, JIAO Wanzhen, CUI Yanyan, ZHAO Bojun. Clinical efficacy of lecithin complex iodine capsule in the adjuvant treatment of retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 46-50. |
[8] | WANG Chuanyu, MU Guoying. Keratoconus combined with Kayser-Fleischer ring: a case report and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 58-62. |
[9] | YAN Fancheng, JIANG Xian, CHAI Yijie, WANG Haosen, MENG Zhaoyang, WANG Xiaolei, WANG Yanling,. miR-30-5p inhibits retinoblastoma cell proliferation by downregulating FOXG1 expression [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 63-69. |
[10] | ZHAO Ying, ZHANG ShanOverview,XU Jiajun, ZHAO JingruGuidance. Research progress on the protective mechanism of heat shock protein 72 in glaucoma retinal ganglion cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 83-87. |
[11] | DAI ChengOverview,LI BinzhongGuidance. Advances in multifocal soft corneal contact lens research [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 100-105. |
[12] | SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112. |
[13] | LI Danfeng, CHEN Fuquan, SHI Li, WANG Jian, XU Min. Application of three-dimensional image processing combined with image navigation technology in perioperative teaching of advanced doctors in rhinology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 113-118. |
[14] | WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124. |
[15] | LIU Bo, XIAO Xuping, LI Yunqiu, ZHOU En, GUO Renbin. Bilateral ossification of the auricular cartilage: a case report and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 12-16. |
|