Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 71-77.doi: 10.6040/j.issn.1673-3770.0.2021.581
Previous Articles Next Articles
QIAO XinjieOverview
CLC Number:
[1] 周梦夏, 孙作珩, 查旭东, 等. 基质金属蛋白酶及抑制剂影响细胞外基质代谢参与慢性鼻-鼻窦炎组织重塑的机制研究[J]. 中国耳鼻咽喉颅底外科杂志, 2020, 26(6): 717-720. doi:10.11798/j.issn.1007-1520.202006025. ZHOU Mengxia, SUN Zuoheng, ZHA Xudong, et al. Advances in the mechanism of matrix metalloproteinases and inhibitors affecting extracellular matrix metabolism and participating in CRS tissue remodeling[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2020, 26(6): 717-720. doi:10.11798/j.issn.1007-1520.202006025. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001. [3] Lehmann AE, Scangas GA, Bergmark RW, et al. Periostin and inflammatory disease: implications for chronic rhinosinusitis[J]. Otolaryngol Head Neck Surg, 2019, 160(6): 965-973. doi:10.1177/0194599819838782. [4] Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists[J]. Rhinology, 2012, 50(1): 1-12. doi:10.4193/Rhino12.000. [5] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600. [6] Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities[J]. Allergy, 2015, 70(5): 533-539. doi:10.1111/all.12577. [7] 蒋子涵, 孟娟. 慢性鼻窦炎内在型研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. JIANG Zihan, MENG Juan. Advances in the endotypes of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. [8] Bae JS, Ryu G, Kim JH, et al. Effects of Wnt signaling on epithelial to mesenchymal transition in chronic rhinosinusitis with nasal polyp[J]. Thorax, 2020, 75(11): 982-993. doi:10.1136/thoraxjnl-2019-213916. [9] Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2020, 21(1): 30-37. doi:10.1097/aci.0000000000000701. [10] Laidlaw TM, Mullol J, Woessner KM, et al. Chronic rhinosinusitis with nasal polyps and asthma[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1133-1141. doi:10.1016/j.jaip.2020.09.063. [11] Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis[J]. Annu Rev Pathol, 2017, 12: 331-357. doi:10.1146/annurev-pathol-052016-100401. [12] 徐艳. 金黄色葡萄球菌附属基因调节系统对毒力和耐药性的影响研究进展[J]. 国际儿科学杂志, 2020, 47(1): 1-4. doi:10.3760/cma.j.issn.1673-4408.2020.01.001. XU Yan. Impact of Staphylococcus aureus accessory gene regulator system on virulence and antibiotic resistance[J]. International Journal of Pediatrics, 2020, 47(1): 1-4. doi:10.3760/cma.j.issn.1673-4408.2020.01.001. [13] 吴玉彬, 周兵. 慢性鼻-鼻窦炎患者鼻腔微生物群的研究概况[J]. 国际耳鼻咽喉头颈外科杂志, 2017, 41(2): 80-84, 93. doi:10.3760/cma.j.issn.1673-4106.2017.02.006. WU Yubin, ZHOU Bing. The sinonasal microbiome of chronic rhinosinusitis[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2017, 41(2): 80-84, 93. doi:10.3760/cma.j.issn.1673-4106.2017.02.006. [14] Scherzad A, Hagen R, Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation[J]. J Inflamm Res, 2019, 12: 309-317. doi:10.2147/JIR.S180853. [15] 陈卓, 刘江怡, 陈杰, 等. 上皮细胞在鼻息肉形成和发展中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(11): 1053-1056. doi:10.13201/j.issn.2096-7993.2020.11.024. CHEN Zhuo, LIU Jiangyi, CHEN Jie, et al. The role of epithelial cells in the formation and development of nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(11): 1053-1056. doi:10.13201/j.issn.2096-7993.2020.11.024. [16] Cheng JZ, Chen JJ, Zhao Y, et al. microRNA-761 suppresses remodeling of nasal mucosa and epithelial-mesenchymal transition in mice with chronic rhinosinusitis through LCN2[J]. Stem Cell Res Ther, 2020, 11(1): 151. doi:10.1186/s13287-020-01598-7. [17] Wang MJ, Sun Y, Li C, et al. Eosinophils correlate with epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps[J]. ORL J Otorhinolaryngol Relat Spec, 2022, 84(1): 70-80. doi:10.1159/000516847. [18] Kao SS, Bassiouni A, Ramezanpour M, et al. Scoping review of chronic rhinosinusitis proteomics[J]. Rhinology, 2020, 58(5): 418-429. doi:10.4193/Rhin20.034. [19] Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. doi:10.1038/s41580-018-0080-4. [20] Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. doi:10.1007/s11684-018-0656-6. [21] Kagalwalla AF, Akhtar N, Woodruff SA, et al. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment[J]. J Allergy Clin Immunol, 2012, 129(5): 1387-1396.e7. doi:10.1016/j.jaci.2012.03.005. [22] 高云博, 张媛, 张罗. 上皮-间质转化与慢性鼻窦炎的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. GAO Yunbo, ZHANG Yuan, ZHANG Luo. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. [23] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. doi:10.1038/nrm3758. [24] 李艺敏, 谭国静, 江雨, 等. TGF-β1/Smads通路在体外培养的鼻息肉组织重构中的作用[J]. 上海交通大学学报(医学版), 2019, 39(7): 737-743. doi:10.3969/j.issn.1674-8115.2019.07.008. LI Yimin, TAN Guojing, JIANG Yu, et al. Role of TGF-β1/Smads signaling pathway in tissue remodeling of cultured nasal polyps in vitro[J]. Journal of Shanghai Jiao Tong University(Medical Science), 2019, 39(7): 737-743. doi:10.3969/j.issn.1674-8115.2019.07.008. [25] Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression[J]. Nat Rev Cancer, 2010, 10(6): 415-424. doi:10.1038/nrc2853. [26] 陈希琦, 张晓双, 周永坤, 等. TGF-β1/Smads信号通路在纤维化疾病中的研究进展[J]. 中国中西医结合外科杂志, 2021, 27(2): 351-354. doi:10.3969/j.issn.1007-6948.2021.02.037. [27] Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873. doi:10.1101/cshperspect.a021873. [28] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi:10.1016/j.cbi.2018.07.008. [29] Hata A, Chen YG. TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8(9): a022061. doi:10.1101/cshperspect.a022061. [30] 张炳煌, 朱旭丽, 高静. 脂氧素A4及脂氧素A4受体在慢性鼻-鼻窦炎上皮-间质转化中的作用[J]. 中国耳鼻咽喉头颈外科, 2021, 28(6): 370-374. doi:10.16066/j.1672-7002.2021.06.012. ZHANG Binghuang, ZHU Xuli, GAO Jing. The effect of lipoxin A4 and lipoxin A4 receptor in the epithelial-mesenchymal transition of chronic rhinosinusitis[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2021, 28(6): 370-374. doi:10.16066/j.1672-7002.2021.06.012. [31] Zhong Y, Li YQ, Zhang H. Silencing TBX1 exerts suppressive effects on epithelial-mesenchymal transition and inflammation of chronic rhinosinusitis through inhibition of the TGFβ-Smad2/3 signaling pathway in mice[J]. Am J Rhinol Allergy, 2020, 34(1): 16-25. doi:10.1177/1945892419866543. [32] Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi:10.1002/alr.22243. [33] Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis[J]. J Allergy Clin Immunol, 2015, 136(6): 1431-1440. doi:10.1016/j.jaci.2015.10.010. [34] 侯从岭, 雷小婷, 芦晓帆, 等. 黄芩苷对肺癌H460细胞生物学特性及Wnt/β-catenin信号通路的影响[J]. 中国老年学杂志, 2022, 42(2): 426-430. doi:10.3969/j.issn.1005-9202.2022.02.043. [35] 何语欣, 杨兀乂, 严海燕. Wnt信号通路与气管损伤相关性的研究进展[J]. 医学分子生物学杂志, 2021, 18(5): 405-408. doi:10.3870/j.issn.1672-8009.2021.05.014. HE Yuxin, YANG Wuyi, YAN Haiyan. Correlation between Wnt signaling pathway and tracheal injury[J]. Journal of Medical Molecular Biology, 2021, 18(5): 405-408. doi:10.3870/j.issn.1672-8009.2021.05.014. [36] George SJ. Wnt pathway: a new role in regulation of inflammation[J]. Arterioscler Thromb Vasc Biol, 2008, 28(3): 400-402. doi:10.1161/ATVBAHA.107.160952. [37] Bansal K, Trinath J, Chakravortty D, et al. Withdrawal: Pathogen-specific TLR2 protein activation programs macrophages to induce Wnt-β-catenin signaling[J]. J Biol Chem, 2019, 294(50): 19450. doi:10.1074/jbc.W119.011944. [38] Mukherjee T, Balaji KN. The WNT framework in shaping immune cell responses during bacterial infections[J]. Front Immunol, 2019, 10: 1985. doi:10.3389/fimmu.2019.01985. [39] De A. Wnt/Ca2+ signaling pathway: a brief overview[J]. Acta Biochim Biophys Sin(Shanghai), 2011, 43(10): 745-756. doi:10.1093/abbs/gmr079. [40] Baarsma HA, Königshoff M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases[J]. Thorax, 2017, 72(8): 746-759. doi:10.1136/thoraxjnl-2016-209753. [41] 吴俊华, 孔维佳, 俞艳萍. Wnt5A在鼻息肉组织中的表达[J]. 临床耳鼻咽喉头颈外科杂志, 2010, 24(23): 1064-1067. doi:10.3969/j.issn.1001-1781.2010.23.004. WU Junhua, KONG Weijia, YU Yanping. Up-regulation of Wnt5A in chronic rhinosinusitis with nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2010, 24(23): 1064-1067. doi:10.3969/j.issn.1001-1781.2010.23.004. [42] Cheng JZ, Yang JP, Xue K, et al. Desmoglein 3 silencing inhibits inflammation and goblet cell mucin secretion in a mouse model of chronic rhinosinusitis via disruption of the Wnt/β-catenin signaling pathway[J]. Inflammation, 2019, 42(4): 1370-1382. doi:10.1007/s10753-019-00998-z. [43] Bruchhage KL, Koennecke M, Drenckhan M, et al. 1, 8-cineol inhibits the Wnt/β-catenin signaling pathway through GSK-3 dephosphorylation in nasal polyps of chronic rhinosinusitis patients[J]. Eur J Pharmacol, 2018, 835: 140-146. doi:10.1016/j.ejphar.2018.07.060. [44] Vetuschi A, Pompili S, di Marco GP, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?[J]. Eur J Histochem, 2020, 64(1): 3079.doi:10.4081/ejh.2020.3079. [45] Min HJ, Choe JW, Kim KS, et al. High-mobility group box 1 protein induces epithelialmesenchymal transition in upper airway epithelial cells[J]. Rhinology, 2020, 58(5): 495-505. doi:10.4193/Rhin18.281. [46] 王重阳, 金海南, 刘思奇, 等. IL-17A通过p38MAPK/ERK1/2信号通路上调慢性鼻窦炎患者MMP-9的表达[J]. 中国病理生理杂志, 2021, 37(11): 2031-2037. doi:10.3969/j.issn.1000-4718.2021.11.015. WANG Chongyang, JIN Hainan, LIU Siqi, et al. IL-17A up-regulates expression of MMP-9 in patients with chronic rhino? sinusitis through p38 MAPK/ERK1/2 signaling pathway[J]. Chinese Journal of Pathophysiology, 2021, 37(11): 2031-2037. doi:10.3969/j.issn.1000-4718.2021.11.015. [47] Guo GC, Wang JX, Han ML, et al. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression[J]. Cell Oncol(Dordr), 2017, 40(2): 157-166. doi:10.1007/s13402-016-0312-6. [48] Hao WW, Zhu YP, Guo Y, et al. miR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells(HNECs)[J]. Transpl Immunol, 2021, 68: 101429. doi:10.1016/j.trim.2021.101429. [49] Li X, Li C, Zhu GH, et al. TGF-β1 induces epithelial-mesenchymal transition of chronic sinusitis with nasal polyps through microRNA-21[J]. Int Arch Allergy Immunol, 2019, 179(4): 304-319. doi:10.1159/000497829. [50] Shi LL, Xiong P, Zhang L, et al. Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns[J]. Allergy, 2013, 68(1): 101-109. doi:10.1111/all.12064. [51] Wang LF, Chien CY, Tai CF, et al. Matrix metalloproteinase-9 gene polymorphisms in nasal polyposis[J]. BMC Med Genet, 2010, 11: 85. doi:10.1186/1471-2350-11-85. [52] Chiarella E, Lombardo N, Lobello N, et al. Nasal polyposis: insights in epithelial-mesenchymal transition and differentiation of polyp mesenchymal stem cells[J]. Int J Mol Sci, 2020, 21(18): E6878. doi:10.3390/ijms21186878. [53] Lee MY, Kim DW, Khalmuratova R, et al. The IFN-γ-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition[J]. Mucosal Immunol, 2019, 12(3): 601-611. doi:10.1038/s41385-019-0149-1. |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[3] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[4] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[5] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[6] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[7] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[8] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[9] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[10] | CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109. |
[11] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[12] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[13] | LI Lin, GAO Zhengwen, CUI Nan, SUN Jianping, HUANG Xianming, CUI Jing. Bioinformatics analysis of gene expression profile in pediatric patients with chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 171-180. |
[14] | CHEN Shiqin, WEI Pingcun, HU Yunlong, HU Jinwang. Effects of three different nasal uses of glucocorticoid on mucosal outcome after endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 195-201. |
[15] | LIN Manqing, ZHOU Min, CHEN Tengyu, LI-Dan, FANG Caishan, WANG Ruizhi, ZHU Jinxiang, RUAN-Yan, XU Huixian, WANG Peiyuan. Meta-analysis of the efficacy and safety of traditional Chinese medicine for nasal irrigation in the treatment of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 209-225. |
|