Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (6): 46-61.doi: 10.6040/j.issn.1673-3770.0.2023.190

• Research Progress • Previous Articles     Next Articles

Research progress of deep learning methods in sleep apnea detection

SHI Zhenghao1, ZHOU Liang1, LI Chengjian1, ZHANG Zhijun1, ZHANG Yitong2, YOU Zhenzhen1, LUO Jing1, CHEN Jingguo2, LIU Haiqin2, ZHAO Minghua1, HEI Xinhong1, REN Xiaoyong2   

  1. 1. School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China2. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
  • Published:2023-12-15

Abstract: Sleep apnea syndrome is a common sleep respiratory disorder caused by partial or complete upper airway obstruction, which can lead to hypertension, coronary heart disease, and other cardiovascular diseases. It also seriously impacts sleep quality and physical and mental health. Sleep polysomnography monitoring is commonly used for determining and confirming sleep apnea, but manually analyzing sleep polysomnography is time-consuming, labor-intensive, and error-prone. In recent years, the research on the application of deep learning methods in sleep apnea detection has received increasing attention. To promote the research development of deep learning-based sleep apnea detection technology, this paper systematically composes and summarizes the current mainstream deep learning-based sleep apnea detection methods, introduces the common sleep apnea detection public datasets, describes the evolutionary development process of deep learning-based sleep apnea detection methods, reviews the deep learning methods in sleep apnea detection in recent years, analyzes the ideas and characteristics of typical methods, characterizes the experimental comparison of typical methods, appraises the problems existing at the present stage of research, and discusses future research and development trends.

Key words: Sleep Apnea Syndrome, Deep learning, Polysomnography, Physiological signal preprocessing

CLC Number: 

  • R766
[1] 潘健云, 莫坤兰, 胡玉丽, 等. 互联网医疗服务对阻塞性睡眠呼吸暂停低通气综合征患者使用CPAP的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 117-122. doi:10.6040/j.issn.1673-3770.0.2021.458 PAN Jianyun, MO Kunlan, HU Yuli, et al. Research progress in Internet medical services of CPAP use in patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 117-122. doi:10.6040/j.issn.1673-3770.0.2021.458
[2] Sun CX, Hong SD, Wang JY, et al. A systematic review of deep learning methods for modeling electrocardiograms during sleep[J]. Physiol Meas, 2022, 43(8): 08TR02. doi:10.1088/1361-6579/ac826e
[3] JeyaJothi ES, Anitha J, Rani S, et al. A comprehensive review: computational models for obstructive sleep apnea detection in biomedical applications[J]. Biomed Res Int, 2022: 7242667. doi:10.1155/2022/7242667
[4] Li XL, Ling SH, Su S. A hybrid feature selection and extraction methods for sleep apnea detection using bio-signals[J]. Sensors, 2020, 20(15): 4323. doi:10.3390/s20154323
[5] Ivanko K, Ivanushkina N, Rykhalska A. Identifying episodes of sleep apnea in ECG by machine learning methods[C] //2020 IEEE 40th International Conference on Electronics and Nanotechnology(ELNANO). Ukraine:IEEE, 2020: 588-593. doi:10.1109/ELNANO50318.2020.9088749
[6] Liu J, Li Q, Xin Y, et al. Obstructive sleep apnea detection using sleep architecture[C] //2020 IEEE International Conference on Mechatronics and Automation(ICMA). Beijing:IEEE, 2020: 255-260. doi:10.1109/ICMA49215.2020.9233529
[7] Wang T, Lu CH, Shen GH, et al. Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network[J]. PeerJ, 2019, 7: e7731. doi:10.7717/peerj.7731
[8] Jiménez-García J, García M, Gutiérrez-Tobal GC, et al. A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry[J]. Comput Biol Med, 2022, 147: 105784. doi:10.1016/j.compbiomed.2022.105784
[9] Barnes LD, Lee K, Kempa-Liehr AW, et al. Detection of sleep apnea from single-channel electroencephalogram(EEG)using an explainable convolutional neural network(CNN)[J]. PLoS One, 2022, 17(9): e0272167. doi:10.1371/journal.pone.0272167
[10] Papini GB, Fonseca P, Margarito J, et al. On the generalizability of ECG-based obstructive sleep apnea monitoring: merits and limitations of the Apnea-ECG database[C] // Annual International Conference of the IEEE Engineering in Medicine and Biology Society. HI:IEEE, 2018: 6022-6025. https://doi.org/10.1109/EMBC.2018.8513660
[11] Liang X, Xiong J, Cao Z, et al. Decreased sample entropy during sleep-to-wake transition in sleep apnea patients[J]. Physiological measurement, 2021,42(4):1361-6579. doi:10.1088/1361-6579/abf1b2
[12] Ichimaru Y, Moody GB. Development of the polysomnographic database on CD-ROM[J]. Psychiatry Clin Neurosci, 1999, 53(2): 175-177. doi:10.1046/j.1440-1819.1999.00527.x
[13] Redline S, Amin R, Beebe D, et al. The childhood adenotonsillectomy trial(CHAT): rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population[J]. Sleep, 2011, 34(11): 1509-1517. doi:10.5665/sleep.1388
[14] Ghassemi MM, Moody BE, Lehman LH, et al. You Snooze, You Win: the PhysioNet/Computing in Cardiology Challenge 2018[J]. Comput Cardiol(2010), 2018, 45: 10.22489/cinc.2018.049. doi: 10.22489/cinc.2018.049
[15] Quan SF, Howard BV, Iber C, et al. The sleep heart health study: design, rationale, and methods[J]. Sleep, 1997, 20(12): 1077-1085
[16] Zarei A, Beheshti H, Asl BM. Detection of sleep apnea using deep neural networks and single-lead ECG signals[J]. Biomedical Signal Processing and Control, 2022, 71: 103125. doi:10.1016/j.bspc.2021.103125
[17] Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension[J]. N Engl J Med, 2000, 342(19): 1378-1384. doi:10.1056/nejm200005113421901
[18] Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, et al. Convolutional neural networks to detect pediatric apnea-hypopnea events from oximetry[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 3555-3558. doi:10.1109/EMBC.2019.8857934
[19] Marcus C, Moore RH, Rosen C, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea[J]. Surv Anesthesiol, 2014, 58: 41. doi:10.1097/01.SA.0000441005.88110.FC
[20] Jambukia SH, Dabhi VK, Prajapati HB. Classification of ECG signals using machine learning techniques: a survey[C/OL] //2015 International Conference on Advances in Computer Engineering and Applications. Ghaziabad: IEEE, 2015: 714-721. doi:10.1109/ICACEA.2015.7164783
[21] Liu XW, Wang H, Li ZJ, et al. Deep learning in ECG diagnosis: a review[J]. Knowl Based Syst, 2021, 227: 107187. doi:10.1016/j.knosys.2021.107187
[22] Penzel T, Kantelhardt JW, Bartsch RP, et al. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography[J]. Front Physiol, 2016,7: 460. doi: 10.3389/fphys.2016.00460
[23] Chang HY, Yeh CY, Lee CT, et al. A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram[J]. Sensors, 2020, 20(15): 4157. doi:10.3390/s20154157
[24] Erdenebayar U, Kim YJ, Park JU, et al. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram[J]. Comput Meth Programs Biomed, 2019, 180: 105001. doi:10.1016/j.cmpb.2019.105001
[25] Sharan RV, Berkovsky S, Xiong H, et al. ECG-derived heart rate variability interpolation and 1-D convolutional neural networks for detecting sleep apnea[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020: 637-640. doi:10.1109/EMBC44109.2020.9175998
[26] Yang QA, Zou L, Wei KM, et al. Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network[J]. Comput Biol Med, 2022, 140: 105124. doi:10.1016/j.compbiomed.2021.105124
[27] Wang L, Lin Y, Wang J. A RR interval based automated apnea detection approach using residual network[J]. comput methods programs biomed, 2019,176:93-104. doi: 10.1016/j.cmpb.2019.05.002
[28] Shen Q, Qin HJ, Wei KM, et al. Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal[J]. IEEE Trans Instrum Meas, 2021, 70: 1-13. doi:10.1109/TIM.2021.3062414
[29] Hamilton P. Open source ECG analysis[C/OL] //Computers in Cardiology. USA: IEEE, 2003: 101-104. doi:10.1109/CIC.2002.1166717
[30] Pan JP, Tompkins WJ. A real-time QRS detection algorithm[J]. IEEE Trans Biomed Eng, 1985, BME-32(3): 230-236. doi:10.1109/TBME.1985.325532
[31] Urtnasan E, Park JU, Joo EY, et al. Identification of sleep apnea severity based on deep learning from a short-term normal ECG[J]. J Korean Med Sci, 2020, 35(47): e399. doi:10.3346/jkms.2020.35.e399
[32] Singh SA, Majumder S. A novel approach osa detection using single-lead ECG scalogram based on deep neural network[J]. J Mech Med Biol, 2019, 19(4): 1950026. doi:10.1142/s021951941950026x
[33] Mashrur FR, Islam MS, Saha DK, et al. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals[J]. Comput Biol Med, 2021, 134: 104532. doi:10.1016/j.compbiomed.2021.104532
[34] Kumar M, Pachori RB, Acharya UR. Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals[J]. Biomed Signal Process Contr, 2017, 31: 301-308. doi:10.1016/j.bspc.2016.08.018
[35] Gupta K, Bajaj V, Ahmad Ansari I. OSACN-net: automated classification of sleep apnea using deep learning model and smoothed Gabor spectrograms of ECG signal[J]. IEEE Trans Instrum Meas, 2022, 71: 1-9. doi:10.1109/TIM.2021.3132072
[36] Feng KC, Qin HJ, Wu S, et al. A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram[J]. IEEE Trans Instrum Meas, 2021, 70: 1-12. doi:10.1109/TIM.2020.3017246
[37] Zhang JM, Tang Z, Gao JF, et al. Automatic detection of obstructive sleep apnea events using a deep CNN-LSTM model[J]. Comput Intell Neurosci, 2021: 5594733. doi:10.1155/2021/5594733
[38] Faust O, Barika R, Shenfield A, et al. Accurate detection of sleep apnea with long short-term memory network based on RR interval signals[J]. Knowl Based Syst, 2021, 212: 106591. doi:10.1016/j.knosys.2020.106591
[39] Bahrami M, Forouzanfar M. Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms[J]. IEEE Trans Instrum Meas, 2022, 71: 1-11. doi:10.1109/TIM.2022.3151947
[40] Qin HJ, Liu GZ. A dual-model deep learning method for sleep apnea detection based on representation learning and temporal dependence[J]. Neurocomputing, 2022, 473: 24-36. doi:10.1016/j.neucom.2021.12.001
[41] Mukherjee D, Dhar K, Schwenker F, et al. Ensemble of deep learning models for sleep apnea detection: an experimental study[J]. Sensors, 2021, 21(16): 5425. doi:10.3390/s21165425
[42] Bernardini A, Brunello A, Gigli GL, et al. AIOSA: an approach to the automatic identification of obstructive sleep apnea events based on deep learning[J]. Artif Intell Med, 2021, 118: 102133. doi:10.1016/j.artmed.2021.102133
[43] Almutairi H, Hassan GM, Datta A. Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks[J]. Biomed Signal Process Contr, 2021, 69: 102906. doi:10.1016/j.bspc.2021.102906
[44] Shao SL, Han GJ, Wang T, et al. Obstructive sleep apnea detection scheme based on manually generated features and parallel heterogeneous deep learning model under IoMT[J]. IEEE J Biomed Heath Inform, 2022, 26(12): 5841-5850. doi:10.1109/JBHI.2022.3166859
[45] Bahrami M, Forouzanfar M. Deep learning forecasts the occurrence of sleep apnea from single-lead ECG[J]. Cardiovasc Eng Technol, 2022, 13(6): 809-815. doi:10.1007/s13239-022-00615-5
[46] Hu SC, Cai WJ, Gao TJ, et al. A hybrid transformer model for obstructive sleep apnea detection based on self-attention mechanism using single-lead ECG[J]. IEEE Trans Instrum Meas, 2022, 71: 1-11. doi:10.1109/TIM.2022.3193169
[47] Liu H, Cui SW, Zhao XH, et al. Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture[J]. Biomed Signal Process Contr, 2023, 82: 104581. doi:10.1016/j.bspc.2023.104581
[48] Lin Y, Zhang H, Wu W, et al. Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals[EB/OL]. [2023-06-16]. https://www.researchsquare.com/article/rs-3028322/v1
[49] Kumar Tyagi P, Agrawal D. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model[J]. Biomed Signal Process Contr, 2023, 80: 104401. doi:10.1016/j.bspc.2022.104401
[50] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735-1780. doi:10.1162/neco.1997.9.8.1735
[51] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-14)[2023-05-11].https://arxiv.org/abs/1412.3555
[52] Chen LL, Zhang X, Song CY. An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram[J]. IEEE Trans Autom Sci Eng, 2015, 12(1): 106-115. doi:10.1109/TASE.2014.2345667
[53] Mostafa SS, Mendonça F, Ravelo-García AG, et al. A systematic review of detecting sleep apnea using deep learning. sensors(basel)[J]. 2019,19(22):4934. doi: 10.3390/s19224934
[54] 张一彤, 刘海琴, 任晓勇. 儿童阻塞性睡眠呼吸暂停相关认知障碍的研究现状、问题与展望[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 119-124. doi: 10.6040/j.issn.1673-3770.0.2020.187 ZHANG Yitong, LIU Haiqin, REN Xiaoyong. Cognitive and behavioral dysfunction related to obstructive sleep apnea in children: current status, problems, and prospects[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 119-124. doi: 10.6040/j.issn.1673-3770.0.2020.187
[55] Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, et al. Automatic assessment of pediatric sleep apnea severity using overnight oximetry and convolutional neural networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020: 633-636. doi:10.1109/EMBC44109.2020.9176342
[56] Vaquerizo-Villar F, álvarez D, Kheirandish-Gozal L, et al. A convolutional neural network architecture to enhance oximetry ability to diagnose pediatric obstructive sleep apnea[J]. IEEE journal of biomedical and health informatics, 2021, 25(8): 2906-2916
[57] John A, Nundy KK, Cardiff B, et al. SomnNET: an SpO2 based deep learning network for sleep apnea detection in smartwatches[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021: 1961-1964. doi:10.1109/EMBC46164.2021.9631037
[58] Leino A, Nikkonen S, Kainulainen S, et al. Neural network analysis of nocturnal SpO2 signal enables easy screening of sleep apnea in patients with acute cerebrovascular disease[J]. Sleep Med,2021,79:71-78. doi: 10.1016/j.sleep.2020.12.032
[59] Sharma P, Jalali A, Majmudar M, et al. Deep-Learning based Sleep Apnea Detection using SpO2 and Pulse Rate[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022: 2611-2614. doi:10.1109/EMBC48229.2022.9871295
[60] álvarez D, Gutiérrez-Tobal GC, Vaquerizo-Villar F, et al. Automated analysis of unattended portable oximetry by means of Bayesian neural networks to assist in the diagnosis of sleep apnea[C/OL] //2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges(GMEPE/PAHCE). Madrid: IEEE, 2016: 1-4. doi:10.1109/GMEPE-PAHCE.2016.7504628
[61] Marcos JV, Hornero R, álvarez D, et al. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry[J]. Comput Meth Programs Biomed, 2008, 92(1): 79-89. doi:10.1016/j.cmpb.2008.05.006
[62] Jiang DH, Ma Y, Wang YY. A multi-scale parallel convolutional neural network for automatic sleep apnea detection using single-channel EEG signals[C] //2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI). October 13-15, 2018, Beijing, China. IEEE, 2019: 1-5. doi:10.1109/CISP-BMEI.2018.8633132
[63] Mahmud T, Khan IA, Mahmud TI, et al. Sleep apnea detection from variational mode decomposed EEG signal using a hybrid CNN-BiLSTM[J]. IEEE Access, 2021, 9: 102355-102367. doi:10.1109/ACCESS.2021.3097090
[64] Mahmud T, Khan IA, Mahmud TI, et al. A sub-frame based feature extraction approach from split-band EEG signal for sleep apnea event detection using multi-layer LSTM[C] //2020 IEEE Region 10 Symposium(TENSYMP). June 5-7, 2020, Dhaka, Bangladesh. IEEE, 2020: 1299-1302. doi:10.1109/TENSYMP50017.2020.9230848
[65] Mahmud T, Khan IA, Ibn Mahmud T, et al. Sleep apnea event detection from sub-frame based feature variation in EEG signal using deep convolutional neural network[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 5580-5583. doi:10.1109/EMBC44109.2020.9176433
[66] Khan IA, Mahmud TI, Mahmud T, et al. Deep convolutional neural network based sleep apnea detection scheme using spectro-temporal subframes of EEG signal[C/OL] //11th International Conference on Electrical and Computer Engineering(ICECE). Bangladesh: IEEE, 2021: 463-466. doi:10.1109/ICECE51571.2020.9393059
[67] Wang Y, Xiao ZW, Fang SW, et al. BI - Directional long short-term memory for automatic detection of sleep apnea events based on single channel EEG signal[J]. Comput Biol Med, 2022, 142: 105211. doi:10.1016/j.compbiomed.2022.105211
[68] Yu H, Liu DY, Zhao J, et al. A sleep apnea-hypopnea syndrome automatic detection and subtype classification method based on LSTM-CNN[J]. Biomed Signal Process Contr, 2022, 71: 103240. doi:10.1016/j.bspc.2021.103240
[69] Gurrala V, Yarlagadda P, Koppireddi P. Detection of sleep apnea based on the analysis of sleep stages data using single channel EEG[J]. Traitement Du Signal, 2021, 38(2): 431-436. doi:10.18280/ts.380221
[70] Chengjian Li, Zhenghao Shi, Liang Zhou, et al. TFFormer:a time frequency information fusion based cnn-transformer model for osa detection with single-lead ECG[C/OL] //IEEE Transactions on Instrumentation and Measurement. [S.l.] : IEEE,2023.doi: 0.1109/TIM.2023.3312472
[71] Chaw HT, Kamolphiwong S, Wongsritrang K. Sleep apnea detection using deep learning[J]. Teh Glas(Online), 2019, 13(4): 261-266. doi:10.31803/tg-20191104191722
[72] Nikkonen S, Afara IO, Leppänen T, et al. Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea[J]. Sci Rep, 2019, 9: 13200. doi:10.1038/s41598-019-49330-7
[1] WANG Teng, YU Lin, LI Sui. The correlation between γ-glutamyl transferase and obstructive sleep apnea syndrome-related hypertension [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 80-84.
[2] ZHANG Yuhuan, ZHANG Junbo, YIN Guoping, YUAN Xuemei, CAO Xin, SUN Yu, CHEN Qiang, YE Jingying. Comparative analysis of polysomnography parameters between the first and second halves of the night in snoring patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 112-117.
[3] ZHANG Yitong, LI Qingxiang, SHI Zhenghao, SHANG Lei, YUAN Yuqi, CAO Zine, MA Lina, LIU Haiqin, REN Xiaoyong, SHI Yewen. The sleep structure of Children with obstructive sleep apnea and the development of a sleep structure interpretation model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 126-132.
[4] DING Longqing, LIU Yiming, CHENG Zhuo, SUN Ran, LIANG Hui. Observation on the therapeutic effect of oropharyngeal exercise on adult obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 153-158.
[5] DU Yueshanyi, WANG Xian, ZHANG Guoming. Progress in the diagnosis and treatment of retinopathy of prematurity using artificial intelligence [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 157-162.
[6] LI Zhuojun, SONG Xicheng, CHEN Xiumei. Analysis of pulmonary function changes in patients with obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 45-50.
[7] LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming. Research progress on the application of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 135-142.
[8] ZHENG Li, XU Zhifei. A case of sleep disordered breathing is the first performance of Chiari deformity in young children report and literature revier [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 111-115.
[9] Huang Tianze, Chen Di,LI Ying. Advances of machine learning in the diagnosis of ocular surface diseases and guiding corneal surgical procedures [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 13-19.
[10] WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131.
[11] LIU Shaofeng, HUANG Guiliang, HUANG Zhenyun, SUN Changzhi, LUO Renzhong. Partial tonsillectomy for 86 cases of obstructive sleep apnea syndrome in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 50-54.
[12] Obstructive sleep apnea syndrome(OSAS)and laryngopharyngeal reflux disease(LPRD)are two common diseases in otolaryngology. In recent years, with the increasing incidence, these diseases have affected the health of more and more people. As research on these two diseases continues to expand, the correlation between them has captured the attention of a number of scholars. In this study, we reviewed the recently published literature on the two diseases, concluding that there is a correlation between them. We have also elaborated on the factors and mechanisms of their mutual influence, analyzed the existing treatment methods of OSAS and LPRD, and provided new ideas for further refinement of the diagnosis and treatment.. Advances in the study of obstructive sleep apnea syndrome and laryngopharyngeal reflux diseaseWANG Hongyan, WANG SanchunOverview TENG Bo, GE Min Guidance Department of Otolaryngology Head & Neck Surgery, the Second Hospital of Jilin University, Changchun 130022, Jilin, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 134-138.
[13] ZHU Zhiling, LI SongOverview,GUAN GuofangGuidance. Application and prospect of artificial intelligence in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120.
[14] SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104.
[15] JI Di, CHEN Xiang, YU Lin. Soft palate surgeries with hyoid bone suspension for obstructive sleep apnea hypopnea syndrome with glossoptosis: a meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Bao-feng,DANG Guang-fu .

Trans-scleral suture fixation in implantation of foldable intraocular lenses

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 376 -378 .
[2] FENG Xin-rong,ZHANG Hong-xia,XU Zhen-ji,QU Jun-jun, . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(3): 225 -226 .
[3] ZHANG Qiu-gui,HE Hai-yan . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 520 -521 .
[4] LI Hai-yan,ZHAO Qiu-liang,HAN Xiao-pan,YU li . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 527 -529 .
[5] SONG Xi-cheng,ZHANG hua,ZHANG Qing-quan . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 385 -387 .
[6] ZHAN Shan-qiang,KONG Fan-li,CAO Wen-juan,TANG Jie . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 559 -560 .
[7] ZHANG Hu,AI Qin . Re-operation for thyroid cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(2): 166 -167 .
[8] HU Ming,LI Zhao-na,LI Yun-jie ,TAO Xiang-chen . Effect of rigid gas permeable contact lens on keratoconus[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(2): 171 -173 .
[9] LOU Feng . Effect of bilateral superior laryngeal nerve block on preventing cardiovascular reaction[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 173 -175 .
[10] CHEN Wei-Xiong, WANG Yue-Jian, CENG Yong, HE Fa-Yao, ZHANG Jian-Li, ZHENG Li-Gang, TANG Su-Cheng. Clinical experience of no-insufflation endoscopic thyroidectomy by a small incision upon the sternum[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(4): 24 -26 .