Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (3): 51-60.doi: 10.6040/j.issn.1673-3770.0.2023.294

• Shanghai Sixth Peoples Hospital Otorhinolaryngology & Head and Neck Surgery Department dedicated to “120th Anniversary of the Sixth Hospital” Commemorative Theme • Previous Articles    

Single-cell RNA sequencing reveals cellular communication between spiral ganglion neurons and inner and outer hair cells in postnatal mice

DONG Wenqi, YU Dongzhen   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • Published:2025-06-04

Abstract: Objective To investigate the cell populations of cochlea during hearing formation and maturation phases and the ligand receptors that regulating the expression of signaling pathways between spiral ganglion neuron and inner and outer hair cells. Methods We investigated the potential cell-cell interactions between inner and outer hair cells and adjacent cells by collecting single-cell sequencing data from mouse cochlea and using CellChat software. Results Seurat analysis showed 15 significant groups of cell types in the mouse cochlea, including Fibroblast, Hensen's cell, Tympanic Border Cell, Coch+/Spp1+ Fibroblast, Inner/Outer Sulcus Cell, Inner Phalangeal Cell/Inner Border Cell, Outer Hair Cell, Reissner's Membrane, Macrophage, Spindle Cell/Root Cell, Spiral Ganglion Neuron, Intermediate Cell, Schwann Cell/Satellite Glial Cell, Inner Hair Cell and Red Blood Cell. Through the CellChat analysis, we observed that the communication relationship between inner and outer hair cells and spiral ganglion neurons in the P14 mouse cochlea was mainly mediated by the Bdnf/Ntrk2 signaling pathway, and Gdf6/(Bmpr1a+Bmpr2), Bmp6/(Bmpr1a+Bmpr2), Ntf3/Ntrk3, Ntf3/Ntrk2, Spp1/Cd44, Spp1/(Itgav+Itgb1), Pdgfa/Pdgfra, Gas6/Tyro3 signaling pathways during P28 period. Conclusion This study initially identified specific ligand receptors between spiral ganglion neuron and inner and outer hair cells during the cochlear hearing formation and cochlea maturation phases based on single-cell transcriptome data.

Key words: Single-cell RNA sequencing, Spiral ganglion neurons, Hair cells, Intercellular communication networks

CLC Number: 

  • R764
[1] Greenzang KA. Hearing Loss[J]. J Clin Oncol, 2018, 36(1): 94-5. doi.org/10.1200/jco.2017.75.2212
[2] Hazlitt RA, Min J, Zuo J. Progress in the development of preventative drugs for cisplatin-induced hearing loss[J]. J Med Chem, 2018, 61(13): 5512-5524. doi:10.1021/acs.jmedchem.7b01653
[3] Bu C, Xu L, Han YC, et al. C-Myb protects cochlear hair cells from cisplatin-induced damage via the PI3K/Akt signaling pathway[J]. Cell Death Discov, 2022, 8(1): 78. doi:10.1038/s41420-022-00879-9
[4] Ching JK, Ju JS, Pittman SK, et al. Increased autophagy accelerates colchicine-induced muscle toxicity[J]. Autophagy, 2013, 9(12): 2115-2125. doi:10.4161/auto.26150
[5] Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea[J]. Mol Cell Neurosci, 2022, 120: 103720. doi:10.1016/j.mcn.2022.103720
[6] Ashmore J, Gale J. The cochlea[J]. Curr Biol, 2000, 10(9): R325-R327. doi:10.1016/S0960-9822(00)00457-7
[7] Dallos P. The active cochlea [J]. J Neurosci, 1992, 12(12): 4575-85. doi.org/10.1523/jneurosci.12-12-04575.1992
[8] Carricondo F, Romero-Gómez B. The cochlear spiral ganglion neurons: the auditory portion of the VIII nerve[J]. Anat Rec, 2019, 302(3): 463-471. doi:10.1002/ar.23815
[9] Sanders TR, Kelley MW. Specification of neuronal subtypes in the spiral ganglion begins prior to birth in the mouse[J]. Proc Natl Acad Sci USA, 2022, 119(48): e2203935119. doi:10.1073/pnas.2203935119
[10] Nayagam BA, Muniak MA, Ryugo DK. The spiral ganglion: connecting the peripheral and central auditory systems[J]. Hear Res, 2011, 278(1/2): 2-20. doi:10.1016/j.heares.2011.04.003
[11] Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear[J]. Semin Cell Dev Biol, 2017, 65: 80-87. doi:10.1016/j.semcdb.2016.09.017
[12] Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses[J]. Cell Tissue Res, 2015, 361(1): 95-114. doi:10.1007/s00441-014-2102-7
[13] Meyer AC, Frank T, Khimich D, et al. Tuning of synapse number, structure and function in the cochlea[J]. Nat Neurosci, 2009, 12(4): 444-453. doi:10.1038/nn.2293
[14] Sun SH, Siebald C, Müller U. Subtype maturation of spiral ganglion neurons[J]. Curr Opin Otolaryngol Head Neck Surg, 2021, 29(5): 391-399. doi:10.1097/MOO.0000000000000748
[15] Dhanasingh AE, Rajan G, van de Heyning P. Presence of the spiral ganglion cell bodies beyond the basal turn of the human cochlea[J]. Cochlear Implants Int, 2020, 21(3): 145-152. doi:10.1080/14670100.2019.1694226
[16] Flores EN, Duggan A, Madathany T, et al. A non-canonical pathway from cochlea to brain signals tissue-damaging noise[J]. Curr Biol, 2015, 25(5): 606-612. doi:10.1016/j.cub.2015.01.009
[17] 徐翀,王晓亭,易红良. 单细胞测序分析喉癌及其微环境代谢相关靶基因[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 33-38.doi: 10.6040/j.issn.1673-3770.0.2021.542 XU Chong, WANG Xiaoting, YI Hongliang. Single-cell sequencing analysis of laryngeal cancer and its microenvironmental metabolism-related target genes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 33-38.doi: 10.6040/j.issn.1673-3770.0.2021.542
[18] Chen JY, Gao DK, Chen JM, et al. Single-cell RNA sequencing analysis reveals greater epithelial ridge cells degeneration during postnatal development of cochlea in rats[J]. Front Cell Dev Biol, 2021, 9: 719491. doi:10.3389/fcell.2021.719491
[19] Durruthy-Durruthy R, Heller S. Applications for single cell trajectory analysis in inner ear development and regeneration[J]. Cell Tissue Res, 2015, 361(1): 49-57. doi:10.1007/s00441-014-2079-2
[20] Xu ZH, Tu S, Pass C, et al. Profiling mouse cochlear cell maturation using 10 × Genomics single-cell transcriptomics[J]. Front Cell Neurosci, 2022, 16: 962106. doi:10.3389/fncel.2022.962106
[21] Amado N, Mathews J, Henry G, et al. mp44-09?understanding prune belly syndrome at single cell resolution[J]. J Urol, 2021, 206(Suppl 3): e796. doi:10.1097/JU.0000000000002065.09
[22] Nishimura K, Noda T, Dabdoub A. Dynamic expression of Sox2, Gata3, and Prox1 during primary auditory neuron development in the mammalian cochlea[J]. PLoS One, 2017, 12(1): e0170568. doi:10.1371/journal.pone.0170568
[23] Walters BJ, Coak E, Dearman J, et al. InVivo interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice[J]. Cell Rep, 2017, 19(2): 307-320. doi:10.1016/j.celrep.2017.03.044
[24] Amma LL, Goodyear R, Faris JS, et al. An emilin family extracellular matrix protein identified in the cochlear basilar membrane[J]. Mol Cell Neurosci, 2003, 23(3): 460-472. doi:10.1016/s1044-7431(03)00075-7
[25] Crispino G, di Pasquale G, Scimemi P, et al. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice[J]. PLoS One, 2011, 6(8): e23279. doi:10.1371/journal.pone.0023279
[26] Jin ZH, Kikuchi T, Tanaka K, et al. Expression of glutamate transporter GLAST in the developing mouse cochlea[J]. Tohoku J Exp Med, 2003, 200(3): 137-144. doi:10.1620/tjem.200.137
[27] Glowatzki E, Cheng N, Hiel H, et al. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea[J]. J Neurosci, 2006, 26(29): 7659-7664. doi:10.1523/JNEUROSCI.1545-06.2006
[28] Udagawa T, Atkinson PJ, Milon B, et al. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration[J]. PLoS Biol, 2021, 19(11): e3001445. doi:10.1371/journal.pbio.3001445
[29] Self T, Sobe T, Copeland NG, et al. Role of myosin VI in the differentiation of cochlear hair cells[J]. Dev Biol, 1999, 214(2): 331-341. doi:10.1006/dbio.1999.9424
[30] Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells[J]. Nature, 2000, 405(6783): 149-155. doi:10.1038/35012009
[31] Simmons DD, Tong B, Schrader AD, et al. Oncomodulin identifies different hair cell types in the mammalian inner ear[J]. J Comp Neurol, 2010, 518(18): 3785-3802. doi:10.1002/cne.22424
[32] Peters LM, Belyantseva IA, Lagziel A, et al. Signatures from tissue-specific MPSS libraries identify transcripts preferentially expressed in the mouse inner ear[J]. Genomics, 2007, 89(2): 197-206. doi:10.1016/j.ygeno.2006.09.006
[33] Kaur T, Zamani D, Tong L, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion[J]. J Neurosci, 2015, 35(45): 15050-15061. doi:10.1523/JNEUROSCI.2325-15.2015
[34] Rai V, Wood MB, Feng H, et al. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells[J]. Sci Rep, 2020, 10(1): 15167. doi:10.1038/s41598-020-72181-6
[35] Milon B, Shulman ED, So KS, et al. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma[J]. Cell Rep, 2021, 36(13): 109758. doi:10.1016/j.celrep.2021.109758
[36] Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development[J]. Neural Dev, 2011, 6: 33. doi:10.1186/1749-8104-6-33
[37] Locher H, Frijns JH, van Iperen L, et al. Neurosensory development and cell fate determination in the human cochlea[J]. Neural Dev, 2013, 8: 20. doi:10.1186/1749-8104-8-20
[38] Tian C, Johnson KR. TBX1 is required for normal stria vascularis and semicircular canal development[J]. Dev Biol, 2020, 457(1): 91-103. doi:10.1016/j.ydbio.2019.09.013
[39] Wan GQ, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss[J]. Nat Commun, 2017, 8: 14487. doi:10.1038/ncomms14487
[40] Roux I, Safieddine S, Nouvian R, et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse[J]. Cell, 2006, 127(2): 277-289. doi:10.1016/j.cell.2006.08.040
[41] Roux I, Hosie S, Johnson SL, et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses[J]. Hum Mol Genet, 2009, 18(23): 4615-4628. doi:10.1093/hmg/ddp429
[42] Seal RP, Akil O, Yi E, et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3[J]. Neuron, 2008, 57(2): 263-275. doi:10.1016/j.neuron.2007.11.032
[43] Fritzsch B, Fariñas I, Reichardt LF. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion[J]. J Neurosci, 1997, 17(16): 6213-6225. doi:10.1523/JNEUROSCI.17-16-06213.1997
[44] Mukherjee S, Kuroiwa M, Oakden W, et al. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury[J]. Mol Ther, 2022, 30(2): 519-533. doi:10.1016/j.ymthe.2021.07.013
[45] Fritzsch B, Silos-Santiago I, Bianchi LM, et al. The role of neurotrophic factors in regulating the development of inner ear innervation[J]. Trends Neurosci, 1997, 20(4): 159-164. doi:10.1016/s0166-2236(96)01007-7
[46] Fritzsch B, Tessarollo L, Coppola E, et al. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance[J]. Prog Brain Res, 2004, 146: 265-278. doi:10.1016/S0079-6123(03)46017-2
[47] Ramekers D, Versnel H, Grolman W, et al. Neurotrophins and their role in the cochlea[J]. Hear Res, 2012, 288(1/2): 19-33. doi:10.1016/j.heares.2012.03.002
[48] Bademci G, Abad C, Cengiz FB, et al. Long-range cis-regulatory elements controlling GDF6 expression are essential for ear development[J]. J Clin Invest, 2020, 130(8): 4213-4217. doi:10.1172/JCI136951
[49] Katoh Y, Katoh M. Comparative integromics on BMP/GDF family[J]. Int J Mol Med, 2006, 17(5): 951-955
[50] Mazerbourg S, Hsueh AJW. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands[J]. Hum Reprod Update, 2006, 12(4): 373-383. doi:10.1093/humupd/dml014
[51] Petitpré C, Faure L, Uhl P, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification[J]. Nat Commun, 2022, 13(1): 3878. doi:10.1038/s41467-022-31580-1
[52] Sakagami M. Role of osteopontin in the rodent inner ear as revealed by in situ hybridization[J]. Med Electron Microsc, 2000, 33(1): 3-10. doi:10.1007/s007950000001
[53] Davis RL, Lopez CA, Mou K. Expression of osteopontin in the inner ear[J]. Ann N Y Acad Sci, 1995, 760: 279-295. doi:10.1111/j.1749-6632.1995.tb44638.x
[54] Takemura T, Sakagami M, Nakase T, et al. Localization of osteopontin in the otoconial organs of adult rats[J]. Hear Res, 1994, 79(1/2): 99-104. doi:10.1016/0378-5955(94)90131-7
[55] Schmitt NC, Rubel EW. Osteopontin does not mitigate cisplatin ototoxicity or nephrotoxicity in adult mice[J]. Otolaryngol Head Neck Surg, 2013, 149(4): 614-620. doi:10.1177/0194599813498218
[56] Lopez CA, Olson ES, Adams JC, et al. Osteopontin expression detected in adult cochleae and inner ear fluids[J]. Hear Res, 1995, 85(1/2): 210-222. doi:10.1016/0378-5955(95)00046-7
[57] Li GM, Liu W, Frenz D. Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS[J]. Neurotoxicology, 2006, 27(1): 22-30. doi:10.1016/j.neuro.2005.05.010
[58] Mostafa DG, Satti HH, Khaleel EF, et al. A high-fat diet rich in corn oil exaggerates the infarct size and memory impairment in rats with cerebral ischemia and is associated with suppressing osteopontin and Akt, and activating GS3Kβ, iNOS, and NF-κB[J]. J Physiol Biochem, 2020, 76(3): 393-406. doi:10.1007/s13105-020-00744-2
[59] de Schepper S, Ge JZ, Crowley G, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease[J]. Nat Neurosci, 2023, 26(3): 406-415. doi:10.1038/s41593-023-01257-z
[60] 李聪,李玲,刘亭彦, 等. 氨基糖苷类抗生素耳毒性影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 128-134. doi: 10.6040/j.issn.1673-3770.0.2021.097 LI Cong, LI Ling, LIU Tingyan, et al. Research progress on influencing factors of aminoglycoside antibiotic ototoxicity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 128-134. doi: 10.6040/j.issn.1673-3770.0.2021.097
[61] Evans AJ, Thompson BC, Wallace GG, et al. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes[J]. J Biomed Mater Res A, 2009, 91(1): 241-250. doi:10.1002/jbm.a.32228
[62] Gillespie LN, Clark GM, Marzella PL. Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs[J]. Neuroreport, 2004, 15(7): 1121-1125. doi:10.1097/00001756-200405190-00008
[63] Landry TG, Wise AK, Fallon JB, et al. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment[J]. Hear Res, 2011, 282(1/2): 303-313. doi:10.1016/j.heares.2011.06.007
[64] Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss[J]. Hear Res, 2008, 242(1/2): 100-109. doi:10.1016/j.heares.2007.12.005
[65] Glueckert R, Bitsche M, Miller JM, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor[J]. J Comp Neurol, 2008, 507(4): 1602-1621. doi:10.1002/cne.21619
[66] Leake PA, Hradek GT, Hetherington AM, et al. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats[J]. J Comp Neurol, 2011, 519(8): 1526-1545. doi:10.1002/cne.22582
[67] Gunewardene N, Ma YT, Lam P, et al. Developing the supraparticle technology for round window-mediated drug administration into the cochlea[J]. J Control Release, 2023, 361: 621-635. doi:10.1016/j.jconrel.2023.08.016
[68] Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: from synaptic regulation to psychiatric disorders[J]. Cell, 2022, 185(1): 62-76. doi:10.1016/j.cell.2021.12.003
[69] Ma JY, You D, Li WY, et al. Bone morphogenetic proteins and inner ear development[J]. J Zhejiang Univ Sci B, 2019, 20(2): 131-145. doi:10.1631/jzus.B1800084
[70] Sun L, Ping L, Gao RZ, et al. lmo4a contributes to zebrafish inner ear and vestibular development via regulation of the bmp pathway[J]. Genes, 2023, 14(7): 1371. doi:10.3390/genes14071371
[71] Waqas M, Sun S, Xuan CY, et al. Bone morphogenetic protein 4 promotes the survival and preserves the structure of flow-sorted Bhlhb5+ cochlear spiral ganglion neurons in vitro[J]. Sci Rep, 2017, 7(1): 3506. doi:10.1038/s41598-017-03810-w
[1] CHEN Ming, KE Bingbing, CUI Yaqi, WU Cuiping, CHEN Zhengnong, LI Chunyan, YIN Shankai. The antagonistic effects of NAD+ on cisplatin-induced oxidative stress injury in hair cells and the regulation of related gene expression [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 11-18.
[2] YANG Songyue, ZHANG Meixia. Advances in single-cell RNA sequencing in the retina [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 162-170.
[3] ZHOU Jing, BI Xiuli, XIAO Yu, HU Jun, FU Xiaolong, YU Yafeng. Clomipramine hydrochloride protects auditory hair cells from neomycin-induced damage [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 22-27.
[4] YANG Kun, CHEN Lijuan, HE Xiaodan, LIU Zhiqi, SHA Suhua. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11.
[5] LI Zhen, CUI Limei,SUN Yan. Advances in the role of bone morphogenetic protein-4 in inner ear development and regeneration of hair and spiral ganglion cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 108-112.
[6] LI Shu-na1, MA Yong-ming1, QIAN Wei1, Vincent Lin2. Effects of Wnt3a on utricle hair cells regeneration in vitro [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 28-31.
[7] YANG Xia, GAO Xia. Cytoskeleton-associated protein in the inner ear and gene mutations cause hereditary deafness [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(1): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!