Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 132-136.doi: 10.6040/j.issn.1673-3770.0.2020.539
ZHANG Xinyu,LEI Chunyan, ZHANG Meixia
CLC Number:
[1] Alovisi C, Panico C, de Sanctis U, et al. Vitreous substitutes: old and new materials in vitreoretinal surgery[J]. J Ophthalmol, 2017, 2017: 3172138. doi:10.1155/2017/3172138. [2] Kleinberg TT, Tzekov RT, Stein L, et al. Vitreous substitutes: a comprehensive review[J]. Surv Ophthalmol, 2011, 56(4): 300-323. doi:10.1016/j.survophthal.2010.09.001. [3] 段文华, 吴敏. 玻璃体腔填充硅油对视网膜与视神经的影响[J]. 中华眼底病杂志, 2015, 31(6): 614-616. doi:10.3760/cma.j.issn.1005-1015.2015.06.030. [4] Antoun J, Azar G, Jabbour E, et al. Vitreoretinal surgery with silicone oil tamponade in primary uncomplicated rhegmatogenous retinal detachment: clinical outcomes and complications[J]. Retina,2016, 36(10): 1906-1912. doi:10.1097/iae.0000000000001008. [5] Tode J, Purtskhvanidze K, Oppermann T, et al. Vision loss under silicone oil tamponade[J]. Graefes Arch Clin Exp Ophthalmol. 2016, 254(8): 1465-1471. doi: 10.1007/s00417-016-3405-z. [6] Ma Y, Zhu XQ, Peng XY. Macular perfusion changes and ganglion cell complex loss in patients with silicone oil-related visual loss[J]. Biomed Environ Sci, 2020, 33(3): 151-157. doi:10.3967/bes2020.021. [7] Shalchi Z, Mahroo OA, Shunmugam M, et al. Spectral domain optical coherence tomography findings in long-term silicone oil-related visual loss[J]. Retin Phila Pa, 2015, 35(3): 555-563. doi:10.1097/IAE.0000000000000325. [8] Siqueira RC, Dos Santos WF, Scott IU, et al. Neuroprotective effects of intravitreal triamcinolone acetonide and dexamethasone implant in rabbit retinas after pars Plana vitrectomy and silicone oil injection[J]. Retina, 2015, 35(2): 364-370. doi:10.1097/iae.0000000000000284. [9] Cibis PA, Becker B, Okun E, et al. The use of liquid silicone in retinal detachment surgery[J]. Arch Ophthalmol, 1962, 68: 590-599. doi:10.1001/archopht.1962.00960030594005. [10] Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies[J]. Prog Retin Eye Res, 2016, 52: 130-155. doi:10.1016/j.preteyeres.2015.10.002. [11] Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. doi:10.1016/j.preteyeres.2017.11.003. [12] 梁倩倩, 杨庭骅, 赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364. LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion[J]. J Otolaryngol Ophthalmol Shandong Univ, 2019, 33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364. [13] Gray RH, Cringle SJ, Constable IJ. Fluorescein angiographic findings in three patients with long-term intravitreal liquid silicone[J]. Br J Ophthalmol, 1989, 73(12): 991-995. doi:10.1136/bjo.73.12.991. [14] Woo JM, Yoon YS, Woo JE, et al. Foveal avascular zone area changes analyzed using OCT angiography after successful rhegmatogenous retinal detachment repair[J]. Curr Eye Res, 2018, 43(5): 674-678. doi:10.1080/02713683.2018.1437922. [15] Zhou Y, Zhang S, Zhou H, et al. Comparison of fundus changes following silicone oil and sterilized air tamponade for macular-on retinal detachment patients[J]. BMC Ophthalmol, 2020, 20(1): 249. doi:10.1186/s12886-020-01523-9. [16] Roohipoor R, Tayebi F, Riazi-Esfahani H, et al. Optical coherence tomography angiography changes in macula-off rhegmatogenous retinal detachments repaired with silicone oil[J]. Int Ophthalmol,2020, 40(12): 3295-3302. doi:10.1007/s10792-020-01516-z. [17] Lee JY, Kim JY, Lee SY, et al. Foveal microvascular structures in eyes with silicone oil tamponade for rhegmatogenous retinal detachment: a swept-source optical coherence tomography angiographystudy[J]. Sci Rep, 2020, 10(1): 2555. doi:10.1038/s41598-020-59504-3. [18] Gaucher D, Chiappore JA, Paques M, et al. Microglial changes occur without neural cell death in diabetic retinopathy[J]. Vision Res, 2007, 47(5): 612-623. doi:10.1016/j.visres.2006.11.017. [19] Quintyn JC, Brasseur G. Subretinal fluid in primary rhegmatogenous retinal detachment: physiopathology and composition[J]. Surv Ophthalmol, 2004, 49(1): 96-108. doi:10.1016/j.survophthal.2003.10.003. [20] Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central Retina of macaque monkeys(Macaca fascicularis)[J]. J Neurosci, 1992, 12(4): 1169-1193. [21] Scarinci F, Varano M, Parravano M. Retinal sensitivity loss correlates with deep capillary plexus impairment in diabetic macular ischemia[J]. J Ophthalmol, 2019, 2019: 7589841. doi:10.1155/2019/7589841. [22] Lou B, Yuan Z, He L, et al. The changes of retinal saturation after long-term tamponade with silicone oil[J]. Biomed Res Int, 2015, 2015: 713828. doi:10.1155/2015/713828. [23] Corvi F, Su L, Sadda SR. Evaluation of the inner choroid using OCT angiography[J]. Eye(Lond), 2021, 35(1): 110-120. doi:10.1038/s41433-020-01217-y. [24] Mervin K, Valter K, Maslim J, et al. Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation[J]. Am J Ophthalmol, 1999,128(2): 155-164. doi:10.1016/s0002-9394(99)00104-x. [25] Bae SH, Hwang JS, Yu HG. Comparative analysis of macular microstructure by spectral-domain optical coherence tomography before and after silicone oil removal[J]. Retina, 2012, 32(9): 1874-1883. doi:10.1097/IAE.0b013e318246907c. [26] Dormegny L, Jeanjean LC, Liu XL, et al. Visual impairment and macular vascular remodeling secondary to retrograde maculopathy in retinal detachment treated with silicon oil tamponade[J]. Retina,2021, 41(2): 309-316. doi:10.1097/IAE.0000000000002812. [27] Tanaka Y, Toyoda F, Shimmura-Tomita M, et al. Clinicopathological features of epiretinal membranes in eyes filled with silicone oil[J]. Clin Ophthalmol, 2018, 12: 1949-1957. doi:10.2147/OPTH.S180381. [28] Wickham LJ, Asaria RH, Alexander R, et al. Immunopathology of intraocular silicone oil: Retina and epiretinal membranes[J]. Br J Ophthalmol, 2007, 91(2): 258-262. doi:10.1136/bjo.2006.103549. [29] Nagpal M, Bhatt KJ, Jain P, et al. Correlation of spectral domain optical coherence tomography findings in sub-silicone oil foveal depression space and visual outcome in eyes undergoing silicone oil removal[J]. Taiwan J Ophthalmol, 2016, 6(1): 21-25. doi:10.1016/j.tjo.2015.11.001. [30] Trivizki O, Zur D, Goldenberg D, et al. A novel finding of hyperreflective ma terial in the silicone-retina interfce: an optical coherence tomographic and histopathological study[J].Retin Phila Pa, 2020, 40(10): 2055-2060. doi:10.1097/IAE.0000000000002691. [31] Saber EE, Bayoumy ASM, Elmohamady MN, et al. Macular microstructure and visual acuity after macula-off retinal detachment repair by 23-gauge vitrectomy plus silicone endotamponade[J]. Clin Ophthalmol Auckl N Z, 2018, 12: 2005-2013. doi:10.2147/OPTH.S181595. [32] Lee SH, Han JW, Byeon SH, et al. Retinal layer segmentation after silicone oil or gas tamponade for macula-on retinal detachment using optical coherence tomography[J]. Retina, 2018, 38(2): 310-319. doi:10.1097/IAE.0000000000001533. [33] Purtskhvanidze K, Hillenkamp J, Tode J, et al. Thinning of inner retinal layers after vitrectomy with silicone oil versus gas endotamponade in eyes with macula-off retinal detachment[J]. Ophthalmologica, 2017, 238(3): 124-132. doi:10.1159/000477743. [34] Rabina G, Azem N, Barequet D, et al. Silicone oil tamponade effect on macular layer thickness and visual acuity[J]. Retina, 2020, 40(5): 998-1004. doi:10.1097/IAE.0000000000002464. [35] Lo DM, Flaxel CJ, Fawzi AA. Macular effects of silicone oil tamponade: optical coherence tomography findings during and after silicone oil removal[J]. Curr Eye Res, 2017, 42(1): 98-103. doi:10.3109/02713683.2016.1146776. [36] Zoric Geber M, Bencic G, Vatavuk Z, et al. Retinal nerve fibre layer thickness measurements after successful retinal detachment repair with silicone oil endotamponade[J]. Br J Ophthalmol, 2015,99(6): 853-858. doi:10.1136/bjophthalmol-2014-305839. [37] Odrobina D, Go biewska J, Maroszyńska I. Choroidal thickness changes after vitrectomy with silicone oil tamponade for proliferative vitreoretinopathy retinal detachment[J]. Retina, 2017, 37(11): 2124-2129. doi:10.1097/IAE.0000000000001437. [38] Karimi S, Entezari M, Nikkhah H, et al. Effects of intravitreal silicone oil on subfoveal choroidal thickness[J]. Ophthalmologica, 2018, 239(2/3): 159-166. doi:10.1159/000485851. [39] Karasu B, Erıs E, Sonmez O, et al. The effect of silicone oil presence time on macular and choroidal thickness with macula-off rhegmatogenous retinal detachment[J]. J Fr Ophtalmol, 2020, 43(7): 626-634. doi:10.1016/j.jfo.2019.10.017. [40] Yamada K, Kaneko H, Tsunekawa T, et al. Silicone oil-associated retinal light exposure under a surgical microscope[J]. Acta Ophthalmol, 2019, 97(5): e742-e746. doi:10.1111/aos.14038. [41] Winter M, Eberhardt W, Scholz C, et al. Failure of potassium siphoning by Müller cells: a new hypothesis of perfluorocarbon liquid-induced retinopathy[J]. Invest Ophthalmol Vis Sci, 2000, 41(1): 256-261. [42] Kaneko H, Takayama K, Asami T, et al. Cytokine profiling in the sub-silicone oil fluid after vitrectomy surgeries for refractory retinal diseases[J]. Sci Rep, 2017, 7(1): 2640. doi:10.1038/s41598-017-03124-x. |
[1] | GU Ranran, LI Fengjiao, JIAO Wanzhen, CUI Yanyan, ZHAO Bojun. Clinical efficacy of lecithin complex iodine capsule in the adjuvant treatment of retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 46-50. |
[2] | YAN Fancheng, JIANG Xian, CHAI Yijie, WANG Haosen, MENG Zhaoyang, WANG Xiaolei, WANG Yanling,. miR-30-5p inhibits retinoblastoma cell proliferation by downregulating FOXG1 expression [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 63-69. |
[3] | TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82. |
[4] | ZHAO Ying, ZHANG ShanOverview,XU Jiajun, ZHAO JingruGuidance. Research progress on the protective mechanism of heat shock protein 72 in glaucoma retinal ganglion cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 83-87. |
[5] | YANG Ru, ZHANG Yuguang, XU Xianghui, WU Xuelian, TAO Yuan, TAN Yue. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102. |
[6] | ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71. |
[7] | ZHANG Min,LI Yan. Research progress of optical coherence tomography and angiography in the diagnosis of Alzheimer's disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 157-162. |
[8] | LI Yingying, FENG Jie,LI Wei, DING Tianjiao. Effects of ischemic stroke and other neurodegenerative diseases on RNFL thickness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 163-168. |
[9] | LU Wenrui, YAN Duan, XU Nuo. Surgical clinical treatment outcomes of 25 gauge vitrectomy for superior rhegmatogenous retinal detachment with air tamponade [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 89-91. |
[10] | ZHANG Xiaoyan, HAO XiaofengOverview,XIE LikeGuidance. The application and progress of optical coherence topography in choroidal osteoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 138-141. |
[11] | ZHOU Huaisheng, LIANG Wanling, LANG Haibo, XIAN Zhilin, YAN Shigang, Kong Xiangbin, SHEN Peiyang. Clinical application of the ultra-widefield laser ophthalmoscope to the preoperative examination of patients with rhegmatogenous retinal detachment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 96-99. |
[12] | Pathologic myopia(PM)is a major cause of vision loss worldwide, particularly in Asian countries. Choroidal neovascularization(CNV)is a severe complication of PM, which can cause macular disorders, leading to central scotoma, metamorphopsia, visual field loss, and finally blindness if not treated. The advents of optical coherence topography(OCT), OCT angiography, and fundus fluorescein angiography are helpful in diagnosing CNV due to PM, which can show the position and size of CNV, whether active or passive. For the treatment, photodynamic and anti-vascular endothelial growth factor(anti-VEGF)therapies are widely applied. In recent years, administering the intravitreal anti-VEGF injection has become the first-line treatment for CNV secondary to PM. Many clinical studies have indicated that intravitreal anti-VEGF injections affect antagonizing neovascularization and reduce macular edema, thereby contributing to visual improvements and better long-term outcomes. This article provides an overview of the current diagnosis and treatment options for myopic CNV.. Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162. |
[13] | Central retinal artery occlusion(CRAO)is the most common cause of acute vision loss. Thrombolysis is a more radical treatment than conservative treatment, including arterial thrombolysis and intravenous thrombolysis, as well as the combination therapy of thrombolysis and other therapies. Thrombolysis treatment can improve the visual acuity of CRAO patients, but because of its lack of randomized controlled trials, further clinical studies are needed to determine their efficacy and safety. Our review summarized the application progress of thrombolysis in recent ten years, further evaluated its safety and effectiveness, and provided an evidence for clinical application.. Application progress of thrombolysis in retinal artery occlusionYANG Ming Overview WEI Wenbin Guidance Beijing Tongren Hospital, Capital Medical University / Beijing Tongren Eye Center / Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment / Beijing Ophthalmology&Visual Sciences Key Lab / Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing 100730, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 5-10. |
[14] | Ocular ischemic syndrome(OIS)is usually undiagnosed or misdiagnosed due to its asymptomatic onset, complicated ocular manifestations, and the lack of awareness, and patients with OIS have a higher mortality. Improving the understanding, diagnosis, and treatment of OIS through multidisciplinary collaboration is key to investigating and preventing systemic vascular events as well as decreasing blindness and mortality. This review summarizes the recent advances in the epidemiology, clinical diagnosis, and management of OIS.. Recent ocular ischemic syndrome advancesWANG Luping Overview HUANG Yingxiang, WANG Yanling Guidance Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 23-27. |
[15] | ObjectiveTo compare the effects of intra-arterial thrombolysis and traditional treatment in central retinal artery occlusion(CRAO). MethodsWe searched the Pubmed, Embase, Clinical.gov, CNKI, and Wan Fang databases for related studies that were published up to May , . We included clinical controls that compared intra-arterial thrombolysis and conventional treatment in CRAO. The random effect model and R software were used for data analysis. ResultsWe identified seven studies including CRAO patients. Meta-analysis results of two randomized controlled trials(RCTs)showed that there was no significant difference in visual acuity improvement between CRAO patients treated with arterial thrombolysis therapy and those with conventional therapy(RR: ., % confidence interval .-., P=.). Meta-analysis results of five cohort studies indicated that compared with conventional therapy, arterial thrombolysis therapy significantly improved visual acuity(RR: ., % confidence interval .-., P<.). The difference between thrombolysis therapy and conventional therapy may be caused by the different treatment time windows in patients. Concerning the adverse reactions after treatment, two RCTs and five cohort studies showed that the adverse reactions in the thrombolysis group are significantly higher than those in the conventional treatment group. ConclusionAlthough intra-arterial thrombolysis therapy has therapeutic potential in CRAO patients, there is still insufficient clinical evidence to prove its effectiveness and safety. Further studies with a large sample and high quality RCTs are required.. Intra-arterial thrombolysis for central retinal artery occlusion: a Meta-analysisCHEN Xi, LI Shanshan, ZHAO Lu, YOU Ran, WANG Yanling Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 28-34. |
|