JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY) ›› 2017, Vol. 31 ›› Issue (3): 95-99.doi: 10.6040/j.issn.1673-3770.0.2016.485

Previous Articles     Next Articles

Research advances on Argonaute2 and its role in human tumors.

ZHANG Yanhui, DONG Pin   

  1. Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, Shanghai 200080, China
  • Received:2016-11-20 Online:2017-06-16 Published:2017-06-16

Abstract: With the rapid development of proteomics, proteins related to tumorigenesis and progression have been continuously discovered and applied to clinical diagnosis. By constituting RNA-induced silencing complex(RISC), selfcatalysis and overexpression, Argonaute2 plays an important role in human tumorigenesis and progression, and is becoming a research focus. In this article, we will review the research advances on the structure, function and mechanism of Argonaute2 in tumor development.

Key words: GW182, Tumor, RNA-induced silencing complex, Post-translational modification, Argonaute2

CLC Number: 

  • R767.19
[1] Sasaki T, Shiohama A, Minoshima S, et al. Identification of eight members of the Argonaute family in the human genome[J]. Genomics, 2003, 82(3):323-330.
[2] Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing[J]. Nat Rev Mol Cell Biol, 2008, 9(1):22-32.
[3] Schirle NT, MacRae IJ. The crystal structure of human argonaute2[J]. Science, 2012, 336(6084):1037-1040.
[4] Lingel A, Simon B, Izaurralde E, et al. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain[J]. Nat Struct Mol Biol, 2004, 11(6):576-577.
[5] Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science, 2004, 305(5689):1437-1441.
[6] Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference[J]. Nature, 2009, 457(7228):405-412.
[7] Simon B, Kirkpatrick JP, Eckhardt S, et al. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein[J]. Structure, 2011, 19(2):172-180.
[8] Martinez J, Tuschl T. RISC is a 5' phosphomonoester-producing RNA endonuclease[J]. Genes Dev, 2004, 18(9):975-980.
[9] Nam S, Ryu H, Son WJ, et al. Mg2+ effect on argonaute and RNA duplex by molecular dynamics and bioinformatics implications[J]. PloS One, 2014, 9(10):e109745.
[10] Ye X, Huang N, Liu Y, et al. Structure of C3PO and mechanism of human RISC activation[J]. Nat Struct Mol Biol, 2011, 18(6):650-657.
[11] Liu Y, Ye X, Jiang F, et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation[J]. Science, 2009, 325(5941):750-753.
[12] De N, Young L, Lau PW, et al. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2[J]. Mol Cell, 2013, 50(3):344-355.
[13] Eulalio A, Helms S, Fritzsch C, et al. A C-terminal silencing domain in GW182 is essential for miRNA function[J]. RNA, 2009, 15(6):1067-1077.
[14] Baillat D, Shiekhattar R. Functional dissection of the human TNRC6(GW182-related)family of proteins[J]. Mol Cell Biol, 2009, 29(15):4144-4155.
[15] Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenylase and DCP1: DCP2 decapping complexes[J]. Genes Dev, 2006, 20(14):1885-1898.
[16] Boland A, Huntzinger E, Schmidt S, et al. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein[J]. Proc Natl Acad Sci U S A, 2011, 108(26):10466-10471.
[17] Jakymiw A, Lian S, Eystathioy T, et al. Disruption of GW bodies impairs mammalian RNA interference[J]. Nat Cell Biol, 2005, 7(12):1267-1274.
[18] Lian SL, Li S, Abadal GX, et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 to mediate silencing[J]. RNA, 2009, 15(5):804-813.
[19] Liu J, Rivas FV, Wohlschlegel J, et al. A role for the P-body component GW182 in microRNA function[J]. Nat Cell Biol, 2005, 7(12):1261-1266.
[20] Meister G, Landthaler M, Peters L, et al. Identification of novel argonaute-associated proteins[J]. Curr Biol, 2005, 15(23):2149-2155.
[21] Zeng Y, Sankala H, Zhang X, et al. Phosphorylation of Argonaute2 at serine-387 facilitates its localization to processing bodies[J]. Biochem J, 2008, 413(3):429-436.
[22] Rüdel S, Wang Y, Lenobel R, et al. Phosphorylation of human Argonaute proteins affects small RNA binding[J]. Nucleic Acids Res, 2011, 39(6):2330-2343.
[23] Horman SR, Janas MM, Litterst C, et al. Akt-mediated phosphorylation of argonaute2 downregulates cleavage and upregulates translational repression of MicroRNA targets[J]. Mol Cell, 2013, 50(3):356-367.
[24] Winter J, Diederichs S. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization[J]. RNA Biol, 2011, 8(6):1149-1157.
[25] Martine NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance[J]. RNA, 2013, 19(5):605-612.
[26] Shen J, Xia W, Khotskaya YB, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2[J]. Nature, 2013, 497(7449):383-387.
[27] Qi HH, Ongusaha PP, Myllyharju J, et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability[J]. Nature, 2008, 455(7211):421-424.
[28] Rybak A, Fuchs H, Hadian K, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2[J]. Nat Cell Biol, 2009, 11(12):1411-1420.
[29] Sahin U, Lapaquette P, Andrieux A, et al. Sumoylation of human argonaute2 at lysine-402 regulates its stability[J]. PLoS One, 2014, 9(7):e102957.
[30] Cheng N, Li Y, Han ZG. Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma[J]. Hepatology, 2013, 57(5):1906-1918.
[31] Papachristou DJ, Korpetinou A, Giannopoulou E, et al. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas[J]. Virchows Arch, 2011, 459(4):431-440.
[32] Li L, Yu C, Gao H, et al. Argonaute proteins: potential biomarkers for human colon cancer[J]. BMC Cancer, 2010, 10:38.
[33] Zhang J, Fan XS, Wang CX, et al. Up-regulation of Ago2 expression in gastric carcinoma[J]. Med Oncol, 2013, 30(3):628.
[34] Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells[J]. Endocrinology, 2009, 150(1):14-23.
[35] Bian XJ, Zhang GM, Gu CY, et al. Down-regulation of Dicer and Ago2 is associated with cell proliferation and apoptosis in prostate cancer[J]. Tumour Biol, 2014, 35(11):11571-11578.
[36] Vaksman O, Hetland TE, Trope' CG, et al. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma[J]. Hum Pathol, 2012, 43(11):2062-2069.
[37] Yang FQ, Huang JH, Liu M, et al. Argonaute2 is up-regulated in tissues of urothelial carcinoma of bladder[J]. Int J Clin Exp Pathol, 2013, 7(1):340-347.
[38] Iosue I, Quaranta R, Masciarelli S, et al. Argonaute2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells[J]. Cell Death Dis, 2013, 4:e926.
[39] Naoqhare PK, Tak YK, Kim MJ, et al. Knock-down of argonaute2(AGO2)induces apoptosis in myeloid leukaemia cells and inhibits siRNA-mediated silencing of transfected oncogenes in HEK-293 cells[J]. Basic Clin Pharmacol Toxicol, 2011, 109(4):274-282.
[40] Asai T, Suzuki Y, Matsushita S, et al. Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown[J]. Biochem Biophys Res Commun, 2008, 368(2):243-248.
[41] Chang SS, Smith I, Glazer C, et al. EIF2C is overexpressed and amplified in head and neck squamous cell carcinoma[J]. ORL J Otorhinolaryngol Relat Spec, 2010, 72(6):337-343.
[42] Sand M, Skrygan M, Georgas D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex(RISC)components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer[J]. Mol Carcinog, 2012, 51(11):916-922.
[43] Carouge D, Blanc V, Knoblaugh SE, et al. Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias[J]. Proc Natl Acad Sci U S A, 2016, 113(37):E5425-E5433.
[44] Murray MJ, Nicholson JC, Coleman N. Biology of childhood germ cell tumours,focussing on the significance of microRNAs[J]. Andrology, 2015, 3(1):129-139.
[45] Guo J, Lv J, Liu M, et al. miR-346 up-regulates Argonaute 2(AGO2)protein expression to augment the activity of other microRNAs(miRNAs)and contributes to cervical cancer cell malignancy[J]. J Biol Chem, 2015, 290(51):30342-30350.
[46] Wu S, Yu W, Qu X, et al. Argonaute2 promotes myeloma angiogenesis via microRNA dysregulation[J]. J Hematol Oncol, 2014, 7(1):40.
[47] Xu Q, Hou YX, Langlais P, et al. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival[J]. BMC Cancer, 2016, 16(1):1-16.
[48] Krell J, Stebbing J, Carissimi C, et al. TP53 regulates miRNA association with AGO2 to remodel the miRNA-mRNA interaction network[J]. Genome Res, 2016, 26(3):331-341.
[49] Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, et al. miRNA biogenesis: biological impact in the development of cancer[J]. Cancer Biol Ther, 2014, 15(11):1444-1455.
[50] Yang M, Haase AD, Huang FK, et al. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence[J]. Mol Cell, 2014, 55(5):782-790.
[1] LI Xuexin, JIANG Zhen, YUE Jianlin, LIN Yun, SUN Ruijie, LIU Dayu, PAN Xinliang. The application of pedicle tissue flaps in reconstruction of pharyngeal and esophageal defects in head and neck surgery [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 48-52.
[2] LIN Yun, PAN Xinliang, LIU Dayu, SUN Ruijie, LI Xuexin, JIANG Zhen, YUE Jianlin. The application of local tissue flaps in primary reconstruction of laryngeal function after laryngectomy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 56-60.
[3] PAN Yongjie, SUN Guochen, ZANG Chuanshan. Granular cell tumor in the larynx: a report of four cases and a literature review. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 104-106.
[4] . The clinical use of nasal endoscopic surgical technique in treatment of rhinosinusal malignant tumor involving in the anterior skull base. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(2): 7-11.
[5] . Endoscopic surgery of sinonasal benign osteogenic tumors with involvement of nasal skull base region. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 31-36.
[6] . Treatment of tumors in pterygopalatine fossa by endoscopy. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 12-15.
[7] . The aqueous levels of TNF-α and IP-10 in different kinds of glaucoma and their correlation. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 103-106.
[8] ZHOU Changhua, GUI Mingcai, XU Dan, LIU Bo. Application of sternocleidomastoid flaps in the resection of benign parotid tumors. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 46-48.
[9] QIU Jie, SUN Yan. Role of tumor marker in the diagnosis and treatment of thyroid carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 28-31.
[10] WANG Junming, SONG Xicheng, LI Dajian. Tunnel flaps repairing the defects in external nasal tumor resection. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 59-61.
[11] ZHANG Meihua, ZHANG Niankai, SHAN Changsheng, LIU Tingting, LIAN Yuanyuan. Diagnostic value of CT of origin of nasal inverted papilloma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(1): 43-46.
[12] LÜ Dan, YANG Hui, YIN Rui, GU Deying, ZHENG Yitao. The middle ear cerumen gland tumor of three cases and review of the literature [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 8-12.
[13] LI Fu, ZHAO Shuyou. Expression of tumor suppressor in lung cancer 1 in laryngeal squamous cell carcinoma and its significance [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 36-38.
[14] WU Li, CHEN Ying, ZHOU Yunyun. Application value of SonoLiver time-intensity curve in the diagnosis of ocular adnexal lymphoma and orbital benign tumor. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(4): 74-76.
[15] ZHU Kang, HE Ying, YAN Jing, XIA Cui, GAO Ying, ZHENG Guo-xi, HOU Jin. Nasal endoscopy by low-temperature plasma radiofrequency for benign tumor resection [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(2): 62-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!