Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (2): 115-120.doi: 10.6040/j.issn.1673-3770.0.2019.598
Previous Articles Next Articles
ZHU Zhiling1, LI Song2Overview,GUAN Guofang1Guidance
CLC Number:
[1] Prado AS. The fourth industrial revolution tackles plastic surgeons[J]. Plast Reconstr Surg, 2018, 142(5): 821e-822e. doi:10.1097/PRS.0000000000004914. [2] Bur AM, Shew M, New J. Artificial intelligence for the otolaryngologist: a state of the art review[J]. Otolaryngol Head Neck Surg, 2019, 160(4): 603-611. doi:10.1177/0194599819827507. [3] Moor J. The Dartmouth college artificial intelligence conference: The next fifty years [A]. Ai Magazine,2006(27):87-89. dol: https://doi.org/10.1609/aimag.v27i4.1911. [4] Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary[J].Biomed Eng Online, 2014, 13: 94. doi:10.1186/1475-925X-13-94. [5] Dzobo K, Adotey S, Thomford NE, et al. Integrating artificial and human intelligence: a partnership for responsible innovation in biomedical engineering and medicine[J]. OMICS, 2019. doi:10.1089/omi.2019.0038. [6] 严律南. 人工智能在医学领域应用的现状与展望[J]. 中国普外基础与临床杂志, 2018, 25(5): 513-514. doi:10.7507/1007-9424.201804033. [7] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210. doi:10.1001/jama.2017.14585. [8] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. doi:10.1001/jama.2016.17216. [9] Esteva A, Kuprel B, Novoa RA, et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 546(7660): 686. doi:10.1038/nature22985. [10] 王艺培, 闫雯, 张益肇, 等. 精准医疗时代人工智能在医学图像中的应用[J]. 人工智能, 2018, 5(4): 22-29. [11] Orive G, Santos-Vizcaino E, Pedraz JL, et al. 3D cell-laden polymers to release bioactive products in the eye[J]. Prog Retin Eye Res, 2019, 68: 67-82. doi:10.1016/j.preteyeres.2018.10.002. [12] Kudo SE, Mori Y, Misawa M, et al. Artificial intelligence and colonoscopy: Current status and future perspectives[J]. Dig Endosc, 2019, 31(4): 363-371. doi:10.1111/den.13340. [13] Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions[J]. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80. doi:10.1016/S2468-1253(18)30282-6. [14] Men K, Chen XY, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7: 315. doi:10.3389/fonc.2017.00315. [15] Wang HF, Zhao TT, Li LC, et al. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation[J]. J Xray Sci Technol, 2018, 26(2): 171-187. doi:10.3233/XST-17302. [16] Rushil A, Thiagarajan JJ, Bremer T, et al. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data[C] //SPIE Medical Imaging. Proc SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, California, USA, 2016: 978532. doi:10.1117/12.2214876. [17] Bing D, Ying J, Miao J, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models[J]. Clin Otolaryngol, 2018, 43(3): 868-874. doi:10.1111/coa.13068. [18] Szaleniec J, Wiatr M, Szaleniec M, et al. Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients[J]. Comput Biol Med, 2013, 43(1): 16-22. doi:10.1016/j.compbiomed.2012.10.003. [19] Feng GY, Ingvalson EM, Grieco-Calub TM, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci USA, 2018, 115(5): E1022-E1031. doi:10.1073/pnas.1717603115. [20] Liu GS, Zhu MH, Kim J, et al. ELHnet: a convolutional neural network for classifying cochlear endolymphatic Hydrops imaged with optical coherence tomography[J]. Biomed Opt Express, 2017, 8(10): 4579-4594. doi:10.1364/BOE.8.004579. [21] Dimauro G, Ciprandi G, Deperte F, et al. Nasal cytology with deep learning techniques[J]. Int J Med Inform, 2019, 122: 13-19. doi:10.1016/j.ijmedinf.2018.11.010. [22] Chowdhury NI, Smith TL, Chandra RK, et al. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks[J]. Int Forum Allergy Rhinol, 2019, 9(1): 46-52. doi:10.1002/alr.22196. [23] Li CF, Jing BZ, Ke LR, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies[J]. Cancer Commun(Lond), 2018, 38(1): 59. doi:10.1186/s40880-018-0325-9. [24] Kournoutas I, Vigo V, Chae R, et al. Acquisition of volumetric models of skull base anatomy using endoscopic endonasal approaches: 3D scanning of deep corridors via photogrammetry[J]. World Neurosurg, 2019, 129: 372-377. doi:10.1016/j.wneu.2019.05.251. [25] Rattanalappaiboon S, Bhongmakapat T, Ritthipravat P. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images[J]. Comput Biol Med, 2015, 67: 83-94. doi:10.1016/j.compbiomed.2015.09.021. [26] Geng ZX, Hoffman MR, Jones CA, et al. Three-dimensional analysis of pharyngeal high-resolution manometry data[J]. Laryngoscope, 2013, 123(7): 1746-1753. doi:10.1002/lary.23987. [27] Kritas S, Dejaeger E, Tack J, et al. Objective prediction of pharyngeal swallow dysfunction in dysphagia through artificial neural network modeling[J]. Neurogastroenterol Motil, 2016, 28(3): 336-344. doi:10.1111/nmo.12730. [28] Tsui SY, Tsao Y, Lin CW, et al. Demographic and symptomatic features of voice disorders and their potential application in classification using machine learning algorithms[J]. Folia Phoniatr Logop, 2018, 70(3/4): 174-182. doi:10.1159/000492327. [29] Erdenebayar U, Park JU, Jeong P, et al. Obstructive sleep apnea screening using a piezo-electric sensor[J]. J Korean Med Sci, 2017, 32(6): 893-899. doi:10.3346/jkms.2017.32.6.893. [30] Witt DR, Chen HJ, Mielens JD, et al. Detection of chronic laryngitis due to laryngopharyngeal reflux using color and texture analysis of laryngoscopic images[J]. J Voice, 2014, 28(1): 98-105. doi:10.1016/j.jvoice.2013.08.015. [31] Verburg F, Reiners C. Sonographic diagnosis of thyroid cancer with support of AI[J]. Nat Rev Endocrinol, 2019, 15(6): 319-321. doi:10.1038/s41574-019-0204-8. [32] Li XC, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. Lancet Oncol, 2019, 20(2): 193-201. doi:10.1016/S1470-2045(18)30762-9. [33] Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3): 677-686. doi:10.1148/radiol.2019182012. [34] Liang SJ, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning[J]. Eur Radiol, 2019, 29(4): 1961-1967. doi:10.1007/s00330-018-5748-9. [35] Zhu WT, Huang YF, Zeng L, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2): 576-589. doi:10.1002/mp.13300. [36] Zhu WL, Kan X. Neural network cascade optimizes microRNA biomarker selection for nasopharyngeal cancer prognosis[J]. PLoS One, 2014, 9(10): e110537. doi:10.1371/journal.pone.0110537. [37] Stepp WH, Farquhar D, Sheth S, et al. RNA oncoimmune phenotyping of HPV-positive p16-positive oropharyngeal squamous cell carcinomas by nodal status[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(11): 967-975. doi:10.1001/jamaoto.2018.0602. [38] Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine[J]. JAMA, 2017, 318(6): 517-518. doi:10.1001/jama.2017.7797. |
[1] | HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. |
[2] | Huang Tianze, Chen Di,LI Ying. Advances of machine learning in the diagnosis of ocular surface diseases and guiding corneal surgical procedures [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 13-19. |
[3] | WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131. |
[4] | WANG Yanjie, CHENG Fengli,ZHAO Changqing. Latest research progress of 3D printing technology and clinical applications in otorhinolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 114-118. |
[5] | CHEN Haibing, WEI Ya'nan, XU Xiaoquan, CHEN Xi. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 40-45. |
[6] | LIANG Huimin, WANG Liqin, WAN Wenjin, SHI Sailei, YUAN Jing, SHEN Yujie, ZHANG Jiacheng, MAO Zefan, NI Jingzi, PAN Yiwen, CHEN Zhibin, CHENG Lei. COVID-19 prevention and control scheme in an ENT endoscopy unit in China [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 88-92. |
[7] | JIANG Zhenhua, ZHANG Lijun, LI Ying, XIAO Yanqin, LI Chao, SHI Bo, ZHANG Guiying, XU Bin, DENG Wei, LUO Gang, LUO Jifang, LIU Guoqi. Epidemic control practices of an otolaryngology-head and neck surgery ward in an area with non-high incidence of COVID-19 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 93-98. |
[8] | Min YIN,Yawen SHI,Xinjie ZHU,Zhibin CHEN,Xi CHEN,Lei CHENG. PBL teaching and the standardization training of residents in otolaryngology-head and neck surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 154-156. |
[9] | Changyu QIU,Jun ZHOU,De′en ZHUANG,Qing YANG,Meiping LU,Lei CHENG. Artificial intelligence technology application in disclosing allergic rhinitis patients′ needs to otolaryngologists [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 88-94. |
[10] | WU Xifu, ZHANG Gehua. Assessment of the effectiveness of problem-based learning during the probation period of the otolaryngology head and [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 116-118. |
[11] | LI Chao, YAN Yujang, ZHANG Qinyue, CHEN Xia, CAO Yonghua. The application of standardized patients in case-based learning of otolaryngology. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 111-114. |
[12] | GUO Yingyuan, ZHANG Dejun, GUAN Guofang, WEN Lianji, ZHANG Hui, YU Duojiao, MA Shuaishuai. Exploration of the application of three-dimensional printing technology in the standardized training of doctors in the otolaryngological department. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 119-122. |
[13] | YANG Jingpu, ZHANG Dejun, ZHAO Yin, CHENG Jinzhang, ZHAO Xue, LIU Yan, YU Dan, WANG Haitao, WEN Lianji. Construction and application of the teaching case database of otolaryngology head and neck surgery. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 98-100. |
[14] | CHEN Xiumei, SONG Xicheng. Diagnosis and treatment of cervical necrotizing fasciitis: a report of 7 cases and literature review. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(3): 65-67. |
[15] | CHEN Yanli, ZHU Zhongshou, SONG Peng. The clinical efficacy of suction electro-coagulator under electronic laryngoscopy for treatment of 37 cases of epiglottic cyst [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 92-93. |
|