Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (2): 121-128.doi: 10.6040/j.issn.1673-3770.0.2019.499
LIN Xiaoqin1Overview,WU Miaoqin2Guidance
CLC Number:
[1] Wang SB, Mitchell P, Plant AJ, et al. Prevalence and risk factors of epiretinal membrane in a cohort with cardiovascular disease risk, compared with the blue mountains eye study.[J]. Br J Ophthalmol, 2015, 99(12):1601-1605. doi: 10.1136/bjophthalmol-2015-306776. [2] Ye HH, Zhang Q, Liu XH, et al. Prevalence and associations of epiretinal membrane in an elderly urban Chinese population in China: the Jiangning Eye Study[J]. Br J Ophthalmol, 2015, 99(12): 1594-1597. doi:10.1136/bjophthalmol-2015-307050. [3] Kim JM, Lee H, Shin JP, et al. Epiretinal membrane: prevalence and risk factors from the Korea national health and nutrition examination survey, 2008 through 2012[J]. Korean J Ophthalmol, 2017, 31(6): 514-523. doi:10.3341/kjo.2016.0098. [4] Myojin S, Yoshimura T, Yoshida S, et al. Gene expression analysis of the irrigation solution samples collected during vitrectomy for idiopathic epiretinal membrane[J]. PLoS One, 2016, 11(10): e0164355. doi:10.1371/journal.pone.0164355. [5] Wang XC, Jobin C, Allen JB, et al. Suppression of NF-kappaB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor[J]. Invest Ophthalmol Vis Sci, 1999, 40(2):477-486. [6] Harada C, Harada T, Mitamura Y, et al. Diverse NF-kappaB expression in epiretinal membranes after human diabetic retinopathy and proliferative vitreoretinopathy[J]. Mol Vis, 2004, 10: 31-36. [7] Iannetti L, Accorinti M, Malagola R, et al. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5786-5789. doi:10.1167/iovs.10-7116. [8] Burke SJ, Lu D, Sparer TE, et al. NF-κB and STAT1 control CXCL1 and CXCL2 Gene Transcription[J]. Am J Physiol Endocrinol Metab, 2014, 306(2):E131. doi:10.1152/ajpendo.00347.2013. [9] Yamamoto H, Hayashi H, Uchida H, et al. Increased soluble interleukin-6 receptor in vitreous fluid of proliferative vitreoretinopathy[J]. Curr Eye Res, 2003, 26(1): 9-14. doi:10.1076/ceyr.26.1.9.14251. [10] Kohno RI, Hata Y, Kawahara S, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction[J]. Br J Ophthalmol, 2009, 93(8): 1020-1026. doi:10.1136/bjo.2008.155069. [11] Malgorzata Goczalik I, Raap M, Weick M, et al. The activation of IL-8 receptors in cultured Guinea pig Müller glial cells is modified by signals from retinal pigment epithelium[J]. J Neuroimmunol, 2005, 161(1/2): 49-60. doi:10.1016/j.jneuroim.2004.12.004. [12] Zaja Milatovic S, Richmond A. CXC chemokines and their receptors: a case for a significant biological role in cutaneous wound healing[J]. 2008, 23(11):1399-1407. doi: 10.14670/HH-23.1399. [13] Snead DR, James S, Snead MP. Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation[J]. Eye(Lond), 2008, 22(10): 1310-1317. doi:10.1038/eye.2008.36. [14] Harada T, Harada C, Mitamura Y, et al. Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy[J]. Diabetes Care, 2002, 25(6): 1060-1065. doi:10.2337/diacare.25.6.1060. [15] Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease[J]. Am J Physiol, 1999, 277(1): C1-C9. doi:10.1152/ajpcell.1999.277.1.C1. [16] Joshi M, Agrawal S, Christoforidis JB. Inflammatory mechanisms of idiopathic epiretinal membrane formation[J]. Mediators Inflamm, 2013, 2013: 192582. doi:10.1155/2013/192582. [17] Liu P, Zhang C, Feng JB, et al. Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax[J]. Arterioscler Thromb Vasc Biol, 2008, 28(4): 725-731. doi:10.1161/ATVBAHA.107.159889. [18] Zhang Y, Wang JH, Zhang YY, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways[J]. Sci Rep, 2016, 6: 23010. doi:10.1038/srep23010. [19] Shao DD, Suresh R, Vakil V, et al. Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation[J]. J Leukoc Biol, 2008, 83(6): 1323-1333. doi:10.1189/jlb.1107782. [20] Hashimoto R, Jiang MZ, Shiba T, et al. Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2017, 255(5): 885-891. doi:10.1007/s00417-017-3585-1. [21] Sommer F, Pollinger K, Brandl F, et al. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1[J]. Graefes Arch Clin Exp Ophthalmol, 2008, 246(9): 1275-1284. doi:10.1007/s00417-008-0846-z. [22] Distler JHW, Schett G, Distler O. The controversial role of tumor necrosis factor α in fibrotic diseases[J]. Arthritis Rheum, 2008, 58(8): 2228-2235. doi:10.1002/art.23645. [23] Mia MM, Boersema M, Bank RA. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1[J]. PLoS One, 2014, 9(3): e91559. doi:10.1371/journal.pone.0091559. [24] Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder[J]. J Clin Invest, 2007, 117(3): 557-567. doi:10.1172/JCI31139. [25] Zandi S, Tappeiner C, Pfister IB, et al. Vitreal cytokine profile differences between eyes with epiretinal membranes or macular holes[J]. Investig Ophthalmol Vis Sci, 2016, 57(14): 6320-6326. doi:10.1167/iovs.16-20657. [26] Mandal N, Kofod M, Vorum H, et al. Proteomic analysis of human vitreous associated with idiopathic epiretinal membrane[J]. Acta Ophthalmol, 2013, 91(4): e333-e334. doi:10.1111/aos.12075. [27] Kampik A, Kenyon KR, Michels RG, et al. Epiretinal and vitreous membranes: comparative study of 56 cases. 1981[J]. Retina(Philadelphia, Pa), 2005, 25(5 Suppl): 1445-1454. doi:10.1097/00006982-200507001-00010. [28] Tuuminen R, Haukka J, Loukovaara S. Statins in rhegmatogenous retinal detachment are associated with low intravitreal angiopoietin-2, VEGF and MMP-2 levels, and improved visual acuity gain in vitrectomized patients[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(10):1685-1693.doi: 10.1007/s00417-014-2873-2. [29] Andjeli c S, Lumi X, Yan XH, et al. Characterization of ex vivo cultured neuronal-and glial-like cells from human idiopathic epiretinal membranes[J]. BMC Ophthalmol, 2014, 14: 165. doi:10.1186/1471-2415-14-165. [30] Kampik A, Green WR, Michels RG, et al. Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery[J]. Am J Ophthalmol, 1980, 90(6): 797-809. doi:10.1016/s0002-9394(14)75195-5. [31] Parapuram SK, Chang BY, Li L, et al. Differential effects of TGFbeta and vitreous on the transformation of retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5965-5974. doi:10.1167/iovs.09-3621. [32] Schumann RG, Eibl KH, Zhao F, et al. Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 7822-7834. doi:10.1167/iovs.11-7514. [33] Bu SC, Kuijer R, van der Worp RJ, et al. Immunohistochemical evaluation of idiopathic epiretinal membranes and in vitro studies on the effect of TGF-β on Müller cells[J]. Investig Ophthalmol Vis Sci, 2015, 56(11): 6506-6514. doi:10.1167/iovs.14-15971. [34] Kanda A, Noda K, Hirose I, et al. TGF-β-SNAIL Axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane[J]. Sci Rep, 2019, 9(1): 673. doi:10.1038/s41598-018-36917-9. [35] Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis[J]. Am J Ophthalmol, 1994, 118(4): 451-456. doi:10.1016/s0002-9394(14)75795-2. [36] Foos RY. Vitreoretinal juncture epiretinal membranes and vitreous[J]. Invest Ophthalmol Vis Sci, 1977, 16(5):416-422. PMID:852943. [37] Satofuka S, Kanda A, Ishida S. Receptor-associated prorenin system in the pathogenesis of retinal diseases[J]. Front Biosci(Schol Ed), 2012, 4: 1449-1460. doi:10.2741/s345. [38] Dong Y, Kanda A, Noda K, et al. Pathologic roles of receptor-associated prorenin system in idiopathic epiretinal membrane[J]. Sci Rep, 2017, 7: 44266. doi:10.1038/srep44266. [39] Maruichi M, Oku H, Takai S, et al. Measurement of activities in two different angiotensin II generating systems, chymase and angiotensin-converting enzyme, in the vitreous fluid of vitreoretinal diseases: a possible involvement of chymase in the pathogenesis of macular hole patients[J]. Curr Eye Res, 2004, 29(4/5): 321-325. doi:10.1080/02713680490516161. [40] Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2009, 247(7): 865-883. doi:10.1007/s00417-009-1082-x. [41] Minchiotti S, Stampachiacchiere B, Micera A, et al. Human idiopathic epiretinal membranes express NGF and NGF receptors[J]. Retina(Philadelphia, Pa), 2008, 28(4): 628-637. doi:10.1097/IAE.0b013e31815ec275. [42] Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells[J]. Prog Retin Eye Res, 2006, 25(2): 149-164. doi:10.1016/j.preteyeres.2005.09.001. [43] Yang Y, Yan YN, Wang YX, et al. Ten-year cumulative incidence of epiretinal membranes assessed on fundus photographs. The Beijing Eye Study 2001/2011[J]. PLoS One, 2018, 13(4): e0195768. doi:10.1371/journal.pone.0195768. [44] 曾庆华. 中医眼科学[M]. 北京: 中国中医药出版社, 2007. [45] Bertelmann T, Sekundo W, Strodthoff S, et al. Intravitreal functional plasminogen in eyes with branch retinal vein occlusion[J]. Ophthalmic Res, 2014, 52(2): 74-80. doi:10.1159/000362340. [46] Unal M, Peyman GA. The efficacy of plasminogen-urokinase combination in inducing posterior vitreous detachment[J]. Retina(Philadelphia, Pa), 2000, 20(1): 69-75. doi:10.1097/00006982-200001000-00013. [47] Lee YS,Wang NK,Chen YP, et al. Plasmin enzyme-assisted vitrectomy in pediatric patients with vitreoretinal diseases. Ophthalmic Res[J]. Ophthalmic Res,2016,56(4):193-201. doi: 10.1159/000447406. [48] Tuuminen R, Loukovaara S. Statin medication in patients with epiretinal membrane is associated with low intravitreal EPO, TGF-beta-1, and VEGF levels[J]. Clin Ophthalmol, 2016, 10: 921-928. doi:10.2147/OPTH.S105686. [49] Machemer R. The surgical removal of epiretinal macular membranes(macular puckers)(author's transl)[J]. Klin Monbl Augenheilkd, 1978, 173(1): 36-42. [50] Hosoda Y, Ooto S, Hangai M, et al. Foveal photoreceptor deformation as a significant predictor of postoperative visual outcome in idiopathic epiretinal membrane surgery[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6387-6393. doi:10.1167/iovs.15-16679. [51] Gozawa M, Takamura Y, Miyake S, et al. Comparison of subconjunctival scarring after microincision vitrectomy surgery using 20-, 23-, 25- and 27-gauge systems in rabbits[J]. Acta Ophthalmol, 2017, 95(7): e602-e609. doi:10.1111/aos.13459. [52] Rizzo S, Barca F, Caporossi T, et al. Twenty-seven-gauge vitrectomy for various vitreoretinal diseases[J]. Retina(Philadelphia, Pa), 2015, 35(6): 1273-1278. doi:10.1097/IAE.0000000000000545. [53] Park DH, Shin JP, Kim SY. Surgically induced astigmatism in combined phacoemulsification and vitrectomy; 23-gauge transconjunctival sutureless vitrectomy versus 20-gauge standard vitrectomy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2009, 247(10): 1331-1337. doi:10.1007/s00417-009-1109-3. [54] Kim M, Park YS, Lee DH, et al. Comparison of surgical outcome of 23-gauge and 25-gauge microincision vitrectomy surgery for management of idiopathic epiretinal membrane in pseudophakic eyes[J]. Retina(Philadelphia, Pa), 2015, 35(10): 2115-2120. doi:10.1097/IAE.0000000000000598. [55] Sandali O, El Sanharawi M, Lecuen N, et al. 25-, 23-, and 20-gauge vitrectomy in epiretinal membrane surgery: a comparative study of 553 cases[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2011, 249(12): 1811-1819. doi:10.1007/s00417-011-1752-3. [56] Haas A, Seidel G, Steinbrugger I, et al. Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery[J]. Retina(Philadelphia, Pa), 2010, 30(1): 112-116. doi:10.1097/IAE.0b013e3181b32ebf. [57] Naruse S, Shimada H, Mori R. 27-gauge and 25-gauge vitrectomy day surgery for idiopathic epiretinal membrane[J]. BMC Ophthalmol, 2017, 17(1): 188. doi:10.1186/s12886-017-0585-1. [58] Hamoudi H, Correll Christensen U, La Cour M. Epiretinal membrane surgery: an analysis of 2-step sequential- or combined phacovitrectomy surgery on refraction and macular anatomy in a prospective trial[J]. Acta Ophthalmol, 2018, 96(3): 243-250. doi:10.1111/aos.13572. [59] Kofod MC, Ulrik C. Deferral of surgery for epiretinal membranes: Is it safe? Results of a randomised controlled trial[J]. British Journal of Ophthalmology, 2016,100(5):688-692.doi: 10.1136/bjophthalmol-2015-307301. [60] 王道光, 刘冬梅, 毕宏生. 三焦点人工晶体植入超长眼轴白内障患者一例报告[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 117-118. doi:10.6040/j.issn.1673-3770.0.2017.371. WANG Daoguang, LIU Dongmei, BI Hongsheng. A case of trifocal intraocular lens implantation in patients with over-long axial cataract[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 117-118. doi:10.6040/j.issn.1673-3770.0.2017.371. [61] Braga-Mele R, Chang D, Dewey S, et al. Multifocal intraocular lenses: relative indications and contraindications for implantation[J]. J Cataract Refract Surg, 2014, 40(2): 313-322. doi:10.1016/j.jcrs.2013.12.011. [62] Hadayer A, Jusufbegovic D, Schaal S. Retinal detachment repair through multifocal intraocular lens- overcoming visualization challenge of the peripheral Retina[J]. Int J Ophthalmol, 2017, 10(6): 1008-1010. doi:10.18240/ijo.2017.06.27. [63] Gibran SK, Flemming B, Stappler T, et al. Peel and peel again[J]. British Journal of Ophthalmology, 2008, 92(3):373-377.doi: 10.1051/0004-6361:20020179. [64] 唐唯, 李元彬. 屈光性白内障手术新进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 149-158. doi:10.6040/j.issn.1673-3770.0.2018.325. TANG Wei, LI Yuanbin. New progress in refractive cataract surgery[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 149-158. doi:10.6040/j.issn.1673-3770.0.2018.325. [65] Enaida H, Sakamoto T, Hisatomi T, et al. Morphological and functional damage of the Retina caused by intravitreous indocyanine green in rat eyes[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2002, 240(3): 209-213. doi:10.1007/s00417-002-0433-7. [66] Lüke M, Januschowski K, Beutel J, et al. Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate Retina[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2008, 246(6): 817-822. doi:10.1007/s00417-007-0761-8. [67] Manousaridis K, Peter S, Mennel S. 20 g PPV with indocyanine green-assisted ILM peeling versus 23 g PPV with brilliant blue G-assisted ILM peeling for epiretinal membrane[J]. Int Ophthalmol, 2016, 36(3): 407-412. doi:10.1007/s10792-015-0148-5. [68] Lubiński W, Gosawski W, Krzystolik K, et al. Assessment of macular function, structure and predictive value of pattern electroretinogram parameters for postoperative visual acuity in patients with idiopathic epimacular membrane[J]. Doc Ophthalmol, 2016, 133(1): 21-30. doi:10.1007/s10633-016-9543-0. [69] Lee PY, Cheng KC, Wu WC. Anatomic and functional outcome after surgical removal of idiopathic macular epiretinal membrane[J]. Kaohsiung J Med Sci, 2011, 27(7): 268-275. doi:10.1016/j.kjms.2011.02.001. [70] Harris S, Wykoff C C, Shah A R. Five-Year Outcomes of Surgically Treated Symptomatic Epiretinal Membranes With and Without Internal Limiting Membrane Peeling[J]. Ophthalmic Surgery, Lasers and Imaging Retina, 2018, 49(5):296-302. doi: 10.3928/23258160-20180501-02. [71] de Novelli FJ, Goldbaum M, Monteiro MLR, et al. Recurrence rate and need for reoperation after surgery with or without internal limiting membrane removal for the treatment of the epiretinal membrane[J]. Int J Retin Vitr, 2017, 3: 48. doi:10.1186/s40942-017-0101-z. [72] Gaber R, You QS, Muftuoglu IK, et al. Characteristics of epiretinal membrane remnant edge by optical coherence tomography after pars Plana vitrectomy[J]. Retina(Philadelphia, Pa), 2017, 37(11): 2078-2083. doi:10.1097/IAE.0000000000001466. [73] Lee C, Lee MW, Choi EY, et al. Comparison of individual retinal layer thicknesses after epiretinal membrane surgery with or without internal limiting membrane peeling[J]. J Ophthalmol, 2018, 2018(8): 1256781. doi:10.1155/2018/1256781. [74] Oh HN, Lee JE, Kim HW, et al. Clinical outcomes of double staining and additional ILM peeling during ERM surgery[J]. Korean J Ophthalmol, 2013, 27(4): 256-260. doi:10.3341/kjo.2013.27.4.256. [75] Chang YC, Lee CL, Chen KJ, et al. Comparison of visual outcome and morphologic change between different surgical techniques in idiopathic epiretinal membrane surgery[J]. J Ophthalmol, 2018, 2018: 4595062. doi:10.1155/2018/4595062. |
[1] | ZHANG YuOverview,QU YiGuidance. Research progress on the pathogenesis and control of ocular toxoplasmosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 70-76. |
[2] | SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112. |
[3] | WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124. |
[4] | ZHANG Keren, LEI Chunyan, ZHANG Meixia. Floppy eyelid syndrome associated with obstructive sleep apnea: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 125-128. |
[5] | SHI Anni, ZHANG Jiajia, BAI Peng, ZHANG Chongyang. Analysis of a therapeutic modality for sudden deafness utilizing neck acupuncture comprising seven lines of treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 103-107. |
[6] | XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19. |
[7] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[8] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[9] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[10] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[11] | ZENG Xianting, WANG Guangke, SUN Zhanwei, WU Tianyi, LI Shichao, WANG Weiwei. Postoperative efficacy of proton pump inhibitor in the treatment of difficult-to-treat rhinosinusitis with laryngopharyngeal reflux [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 189-194. |
[12] | ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71. |
[13] | HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. |
[14] | HAN Yingying,LI Yanzhong. Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 126-132. |
[15] | DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150. |
|